, Volume 187, Issue 1, pp 243–268 | Cite as

How (far) can rationality be naturalized?



The paper shows why and how an empirical study of fast-and-frugal heuristics can provide norms of good reasoning, and thus how (and how far) rationality can be naturalized. We explain the heuristics that humans often rely on in solving problems, for example, choosing investment strategies or apartments, placing bets in sports, or making library searches. We then show that heuristics can lead to judgments that are as accurate as or even more accurate than strategies that use more information and computation, including optimization methods. A standard way to defend the use of heuristics is by reference to accuracy-effort trade-offs. We take a different route, emphasizing ecological rationality (the relationship between cognitive heuristics and environment), and argue that in uncertain environments, more information and computation are not always better (the “less-can-be-more” doctrine). The resulting naturalism about rationality is thus normative because it not only describes what heuristics people use, but also in which specific environments one should rely on a heuristic in order to make better inferences. While we desist from claiming that the scope of ecological rationality is unlimited, we think it is of wide practical use.


Rationality Judgment and decision-making Heuristics Uncertainty 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexy R. (1993) Justification and application of norms. Ratio Juris 6: 157–170CrossRefGoogle Scholar
  2. Anderson J. R. (1990) The adaptive character of thought. Erlbaum, Hillsdale, NJGoogle Scholar
  3. Axelrod R. (1984) The evolution of cooperation. Basic Books, New YorkGoogle Scholar
  4. Berg, N., Biele, G., & Gigerenzer, G. (2011). Logical consistency and accuracy of beliefs: Survey evidence on health decision-making among economists. Unpublished manuscript.Google Scholar
  5. Bergert F. B., Nosofsky R. M. (2007) A response–time approach to comparing generalized rational and take-the-best models of decision making. Journal of Experimental Psychology: Learning, Memory, and Cognition 33: 107–129CrossRefGoogle Scholar
  6. Binmore K. (2009) Rational decisions. Princeton University Press, Princeton, NJGoogle Scholar
  7. Birnbacher D. (1988) Verantwortung für zukünftige Generationen. Reclam, StuttgartGoogle Scholar
  8. Bishop M. (2008) Reflections on a normative psychology. In: Beckermann A., Walter S. (eds) Philosophy: Foundations and applications. Mentis, Paderborn, pp 25–262Google Scholar
  9. Bishop M., Trout J. D. (2005) Epistemology and the psychology of human judgment. Oxford University Press, New YorkCrossRefGoogle Scholar
  10. Bookstaber R., Langsam J. (1985) On the optimality of coarse behavior rules. Journal of Theoretical Biology 116: 161–193CrossRefGoogle Scholar
  11. Boyd R., Richerson P. J. (2005) The origin and evolution of cultures. Oxford University Press, New YorkGoogle Scholar
  12. Brandstätter E., Gigerenzer G., Hertwig R. (2006) The priority heuristic: A process model of risky choice. Psychological Review 113: 409–432CrossRefGoogle Scholar
  13. Brandstätter E., Gigerenzer G., Hertwig R. (2008) Risky choice with heuristics: Reply to Birnbaum (2008), Johnson, Schulte-Mecklenbeck, and Willemsen (2008) and Rieger and Wang (2008). Psychological Review 115: 281–290CrossRefGoogle Scholar
  14. Brighton, H. (2006). Robust inference with simple cognitive models. In C. Lebiere & R. Wray (Eds.), Between a rock and a hard place: Cognitive science principles meet AI-hard problems. Papers from the AAAI Spring symposium (AAAI Tech. Rep. No. SS-06-03, pp. 17–22). Menlo Park, CA: AAAI Press.Google Scholar
  15. Brighton H., Gigerenzer G. (2008) Bayesian brains and cognitive mechanisms: Harmony or dissonance?. In: Chater N., Oaksford M. (eds) The probabilistic mind: Prospects for Bayesian cognitive science. Oxford University Press, New York, pp 189–208CrossRefGoogle Scholar
  16. Bröder A. (2003) Decision making with the “adaptive toolbox”: Influence of environmental structure, intelligence, and working memory load. Journal of Experimental Psychology 29: 611–625Google Scholar
  17. Bröder A., Gaissmaier W. (2007) Sequential processing of cues in memory-based multi-attribute decisions. Psychonomic Bulletin and Review 14: 895–900CrossRefGoogle Scholar
  18. Bruss F. T. (2000) Der Ungewissheit ein Schnippchen schlagen. Spektrum der Wissenschaft 6: 106–107Google Scholar
  19. Carnap R. (1947) On the application of inductive logic. Philosophy and Phenonmenlogical Research 8: 133–148CrossRefGoogle Scholar
  20. Chiappe D. L., Vervaeke J. (1997) Fodor, Cherniak, and the naturalization of rationality. Theory & Psychology 7: 799–821CrossRefGoogle Scholar
  21. Cooper G. F. (1990) Computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence 42: 393–405CrossRefGoogle Scholar
  22. Czerlinski, J., Gigerenzer, G., & Goldstein, D. G. (1999). How good are simple heuristics? In G. Gigerenzer, P. M. Todd, & the ABC Research Group (Eds.), Simple heuristics that make us smart (pp. 97–118). New York: Oxford University Press.Google Scholar
  23. Dagum P., Luby M. (1993) Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence 60: 141–153CrossRefGoogle Scholar
  24. Daniels N. (1979) Wide reflective equilibrium and theory acceptance in ethics. The Journal of Philosophy 76: 256–282CrossRefGoogle Scholar
  25. Daston L. J. (1988) Classical probability in the enlightenment. Princeton University Press, Princeton, NJGoogle Scholar
  26. Dawes R. M. (1979) The robust beauty of improper linear models in decision making. American Psychologist 34: 571–582CrossRefGoogle Scholar
  27. Dawes R. M., Corrigan B. (1974) Linear models in decision making. Psychological Bulletin 81: 95–106CrossRefGoogle Scholar
  28. DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy? Review of Financial Studies, 22, 1915–1953.Google Scholar
  29. Dhami M. K. (2003) Psychological models of professional decision-making. Psychological Science 14: 175–180CrossRefGoogle Scholar
  30. Dhami M. K., Ayton P. (2001) Bailing and jailing the fast and frugal way. Journal of Behavioral Decision Making 14: 141–168CrossRefGoogle Scholar
  31. Dieckmann A., Rieskamp J. (2007) The influence of information redundancy on probabilistic inferences. Memory & Cognition 35: 1801–1813CrossRefGoogle Scholar
  32. Dudey T., Todd P. M. (2002) Making good decisions with minimal information: Simultaneous and sequential choice. Journal of Bioeconomics 3: 195–215CrossRefGoogle Scholar
  33. Einhorn H. J., Hogarth R. M. (1975) Unit weighting schemes for decision making. Organizational Behavior and Human Performance 13: 171–192CrossRefGoogle Scholar
  34. Ettenson R., Shanteau J., Krogstad J. (1987) Expert judgment: Is more information better?. Psychological Report 60: 227–238CrossRefGoogle Scholar
  35. Ford J. K., Schmitt N., Schechtman S. L., Hults B. H., Doherty M. L. (1989) Process tracing methods: Contributions, problems, and neglected research questions. Organizational Behavior and Human Decision Processes 43: 75–117CrossRefGoogle Scholar
  36. Garcia-Retamero R., Dhami M. K. (2009) Take-the-best in expert-novice decision strategies for residential burglary. Psychonomic Bulletin & Review 16: 163–169CrossRefGoogle Scholar
  37. Gigerenzer G. (2004) Striking a blow for sanity in theories of rationality. In: Augier M., March J. G. (eds) Models of a man: Essays in memory of Herbert A.Simon. MIT Press, Cambridge, MA, pp 389–409Google Scholar
  38. Gigerenzer G. (2007) Gut feelings: The intelligence of the unconscious. Viking Press, New YorkGoogle Scholar
  39. Gigerenzer G. (2008) Rationality for mortals. Oxford University Press, New YorkGoogle Scholar
  40. Gigerenzer G., Brighton H. (2009) Homo heuristicus: Why biased minds make better inferences. Topics in Cognitive Science 1: 1–37CrossRefGoogle Scholar
  41. Gigerenzer G., Gaissmaier W., Kurz-Milcke E., Schwartz L. M., Woloshin S. W. (2007) Helping doctors and patients make sense of health statistics. Psychological Science in the Public Interest 8: 53–96Google Scholar
  42. Gigerenzer G., Goldstein D. G. (1996) Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review 103: 650–669CrossRefGoogle Scholar
  43. Gigerenzer, G., Selten, R. (eds) (2001) Bounded rationality: The adaptive toolbox. MIT Press, Cambridge, MAGoogle Scholar
  44. Gigerenzer G., Swijtink Z., Porter T., Daston L., Beatty J., Krüger L. (1989) The empire of chance. How probability changed science and everyday life. Cambridge University Press, CambridgeGoogle Scholar
  45. Gigerenzer, G., Todd, P. M., & the ABC Research Group. (1999). Simple heuristics that make us smart. New York: Oxford University Press.Google Scholar
  46. Gilbert J. P., Mosteller F. (1966) Recognizing the maximum of a sequence. American Statistical Association Journal 61: 35–73Google Scholar
  47. Goldman A. (1986) Epistemology and cognition. Harvard University Press, Cambridge, MAGoogle Scholar
  48. Goldman A. (2008) Human rationality: Epistemological and psychological perspectives. In: Beckermann A., Walter S. (eds) Philosophy: Foundations and applications. Mentis, Paderborn, pp 230–247Google Scholar
  49. Goldstein D. G., Gigerenzer G. (2002) Models of ecological rationality: The recognition heuristic. Psychological Review 109: 75–90CrossRefGoogle Scholar
  50. Good I. J. (1967) On the principle of total evidence. The British Journal for the Philosophy of Science 17: 319–321CrossRefGoogle Scholar
  51. Goodman N. (1965) Fact, fiction, and forecast. Bobbs-Merrill, Indianapolis, INGoogle Scholar
  52. Green L. A., Mehr D. R. (1997) What alters physicians’ decisions to admit to the coronary care unit?. The Journal of Family Practice 45: 219–226Google Scholar
  53. Grice H. P. (1975) Logic and conversation. In: Cole P., Morgan J. L. (eds) Syntax and semantics, vol. 3: Speech acts. Academic Press, New York, pp 41–58Google Scholar
  54. Günther K. (1993) The sense of appropriateness. SUNY Press, Albany, NYGoogle Scholar
  55. Habermas J. (1997) Between facts and norms. Polity Press, CambridgeGoogle Scholar
  56. Hanna R. (2006) Rationality and the ethics of logic. The Journal of Philosophy 103: 67–100Google Scholar
  57. Hertwig R., Gigerenzer G. (1999) The “conjunction fallacy” revisited: How intelligent inferences look like reasoning errors. Journal of Behavioral Decision Making 12: 275–305CrossRefGoogle Scholar
  58. Hogarth R. M., Karelaia N. (2005) Ignoring information in binary choice with continuous variables: When is less “more”?. Journal of Mathematical Psychology 49: 115–124CrossRefGoogle Scholar
  59. Hogarth R. M., Karelaia N. (2006) Take-the-best and other simple strategies: Why and when they work ‘well’ in binary choice. Theory and Decision 61: 205–249CrossRefGoogle Scholar
  60. Huberman G., Jiang W. (2006) Offering vs. choice in 401(k) plans: Equity exposure and number of funds. Journal of Finance 61: 763–801CrossRefGoogle Scholar
  61. Hutchinson J. M. C., Gigerenzer G. (2005) Simple heuristics and rules of thumb: Where psychologists and behavioural biologists might meet. Behavioural Processes 69: 97–124CrossRefGoogle Scholar
  62. Johnson E. J., Goldstein D. G. (2003) Do defaults save lives?. Science 302: 1338–1339CrossRefGoogle Scholar
  63. Johnson E. J., Schulte-Mecklenbeck M., Willemsen M. C. (2008) Process models deserve process data: A comment on Brandstätter, Gigerenzer, and Hertwig (2006). Psychological Review 115: 263–273CrossRefGoogle Scholar
  64. Kant, I. (1998). In J. Timmermann (Ed.), Kritik der reinen Vernunft. Hamburg: Meiner. (Original work published 1781/1787.)Google Scholar
  65. Kim J. (1988) What is “naturalized epistemology”?. Philosophical Perspectives 2: 381–405CrossRefGoogle Scholar
  66. Kohli R., Jedidi K. (2007) Representation and inference of lexicographic preference models and their variants. Marketing Science 26: 380–399CrossRefGoogle Scholar
  67. Lee M. D., Loughlin N., Lundberg I. B. (2002) Applying one reason decision making: The prioritization of literature searches. Australian Journal of Psychology 54: 137–143CrossRefGoogle Scholar
  68. Makridakis S., Hibon M. (2000) The M3-competition: Results, conclusions and implications. International Journal of Forecasting 16: 451–476CrossRefGoogle Scholar
  69. Martignon L., Hoffrage U. (2002) Fast, frugal, and fit: Simple heuristics for paired comparison. Theory & Decision 52: 29–71CrossRefGoogle Scholar
  70. Martignon L., Vitouch O., Takezawa M., Forster M. R. (2003) Naive and yet enlightened: From natural frequencies to fast and frugal decision trees. In: Hardman D., Macchi L. (eds) Thinking: Psychological perspectives on reasoning, judgment and decision making. Wiley, Chichester, pp 189–211Google Scholar
  71. Mele, A., Rawlings, P. (eds) (2004) The Oxford handbook of rationality. Oxford University Press, OxfordGoogle Scholar
  72. Messick D. M. (1993) Equality as a decision heuristic. In: Mellers B. A., Baron J. (eds) Psychological perspectives on justice. Cambridge University Press, New York, pp 11–31CrossRefGoogle Scholar
  73. Michalewicz Z., Fogel D. (2000) How to solve it: Modern heuristics. Springer, New YorkGoogle Scholar
  74. Mugford S. T., Mallon E. B., Franks N. R. (2001) The accuracy of Buffon’s needle: A rule of thumb used by ants to estimate area. Behavioral Ecology 12: 655–658CrossRefGoogle Scholar
  75. Nosofsky R. M., Bergert F. B. (2007) Limitations of exemplar models of multi-attribute probabilistic inference. Journal of Experimental Psychology: Learning, Memory, and Cognition 33: 999–1019CrossRefGoogle Scholar
  76. Nozick R. (1993) The nature of rationality. Princeton University Press, Princeton, NJGoogle Scholar
  77. Payne J. W., Bettman J. R., Johnson E. J. (1993) The adaptive decision maker. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  78. Petrie M., Halliday T. (1994) Experimental and natural changes in the peacock’s (Pavo cristatus) train can affect mating success. Behavioral and Ecological Sociobiology 35: 213–217CrossRefGoogle Scholar
  79. Pohl R. (2006) Empirical tests of the recognition heuristic. Journal of Behavioral Decision Making 19: 251–271CrossRefGoogle Scholar
  80. Putnam H. (1982) Why reason can’t be naturalized. Synthese 52: 3–24CrossRefGoogle Scholar
  81. Quine W. V. O. (1969) Epistemology naturalized. In: Quine W. V. O. (eds) Ontological relativity and other essays. Columbia Press, New York, pp 69–90Google Scholar
  82. Quine, W. V. O. (1990). Pursuit of truth. Cambridge, MA: Harvard University Press (2nd ed. 1992).Google Scholar
  83. Rawls J. (1971) A theory of justice. Harvard University Press, Cambridge, MAGoogle Scholar
  84. Reddy R. (1988) Foundations and grand challenges of artificial intelligence: AAAI presidential address. AI Magazine 9: 9–21Google Scholar
  85. Rieskamp J., Hoffrage U. (2008) Inferences under time pressure: How opportunity costs affect strategy selection. Acta Psychologica 127: 258–276CrossRefGoogle Scholar
  86. Rieskamp J., Otto P. E. (2006) SSL: A theory of how people learn to select strategies. Journal of Experimental Psychology: General 135: 207–236CrossRefGoogle Scholar
  87. Savage L. J. (1972) The foundations of statistics. Dover, New YorkGoogle Scholar
  88. Schmidt F. L. (1971) The relative efficiency of regression and simple unit weighting predictor weights in applied differential psychology. Educational and Psychological Measurement 31: 699–714CrossRefGoogle Scholar
  89. Schooler L. J., Hertwig R. (2005) How forgetting aids heuristic inference. Psychological Review 112: 610–628CrossRefGoogle Scholar
  90. Selten R. (2001) What is bounded rationality?. In: Gigerenzer G., Selten R. (eds) Bounded rationality: The adaptive toolbox. MIT Press, Cambridge, MA, pp 13–36Google Scholar
  91. Serwe S., Frings C. (2006) Who will win Wimbledon? The recognition heuristic in predicting sports events. Journal of Behavioral Decision Making 19: 321–332CrossRefGoogle Scholar
  92. Shanteau J. (1992) How much information does an expert use? Is it relevant?. Acta Psychologica 81: 75–86CrossRefGoogle Scholar
  93. Simon H. A. (1955) A behavioral model of rational choice. Quarterly Journal of Economics 69: 99–118CrossRefGoogle Scholar
  94. Simon H. A. (1990) Invariants of human behavior. Annual Review of Psychology 41: 1–19CrossRefGoogle Scholar
  95. Smith V. L. (2003) Constructivist and ecological rationality in economics. American Economic Review 93: 465–508CrossRefGoogle Scholar
  96. Stein E. (1996) Without good reason: The rationality debate in philosophy and cognitive science. Clarendon, OxfordGoogle Scholar
  97. Stigler G. J. (1961) The economics of information. Journal of Political Economy 69: 213–225CrossRefGoogle Scholar
  98. Todd P. M. (2001) Fast and frugal heuristics for environmentally bounded minds. In: Gigerenzer G., Selten R. (eds) Bounded rationality: The adaptive toolbox. MIT Press, Cambridge, MA, pp 51–70Google Scholar
  99. Todd, P. M., & Miller, G. F. (1999). From pride and prejudice to persuasion: Satisficing in mate search. In G. Gigerenzer, P. M. Todd, & the ABC Research Group (Eds.), Simple heuristics that make us smart (pp. 287–308). New York: Oxford University Press.Google Scholar
  100. Tversky A. (1972) Elimination by aspects: A theory of choice. Psychological Review 79: 281–299CrossRefGoogle Scholar
  101. Wübben M., Wangenheim F. v. (2008) Instant customer base analysis: Managerial heuristics often “get it right”. Journal of Marketing 72: 82–93CrossRefGoogle Scholar
  102. Yee M., Hauser J., Orlin J., Dahan E. (2007) Greedoid-based non-compensatory two-stage consideration-then-choice inference. Marketing Science 26: 532–549CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Max Planck Institute for Human DevelopmentBerlinGermany

Personalised recommendations