, Volume 187, Issue 1, pp 95–122 | Cite as

Reversing 30 years of discussion: why causal decision theorists should one-box

  • Wolfgang Spohn


The paper will show how one may rationalize one-boxing in Newcomb’s problem and drinking the toxin in the Toxin puzzle within the confines of causal decision theory by ascending to so-called reflexive decision models which reflect how actions are caused by decision situations (beliefs, desires, and intentions) represented by ordinary unreflexive decision models.


Causal decision theory Evidential decision theory Newcomb’s problem Toxin puzzle Reflexive decision theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barwise J. (1990) On the model theory of common knowledge. In: J. Barwise (eds) The situation in logic. CSLI Lecture Notes 17. Cambridge, Cambridge University PressGoogle Scholar
  2. Bratman M. E. (1999) Faces of intention. Selected essays on intention and agency. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. Campbell, R., Sowden, L. (eds) (1985) Paradoxes of rationality and cooperation. University of British Columbia Press, VancouverGoogle Scholar
  4. Eells E. (1982) Rational decision and causality. Cambridge University Press, CambridgeGoogle Scholar
  5. Fishburn P. C. (1964) Decision and value theory. Wiley, New YorkGoogle Scholar
  6. Frank R. H. (1988) Passions within reason. The strategic role of the emotions. W. W. Norton & Company, New YorkGoogle Scholar
  7. Gibbard A., Harper W. L. (1978) Counterfactuals and two kinds of expected utility. In: Hooker C. A., Leach J. J., McClennen E. F. (eds) Foundations and applications of decision theory. Reidel, Dordrecht, pp 125–162Google Scholar
  8. Hammond P. J. (1976) Changing tastes and coherent dynamic choice. Review of Economic Studies 43: 159–173CrossRefGoogle Scholar
  9. Hammond P. J. (1988) Consequentialist foundations for expected utility. Theory and Decision 25: 25–78CrossRefGoogle Scholar
  10. Howard R. A., Matheson J. E. (1981) Influence diagrams. In: Howard R. A., Matheson J. E. (eds) Readings on the principles and applications of decision analysis. Strategic Decisions Group, Menlo Park, CA, pp 719–762Google Scholar
  11. Jeffrey, R. C. (1965/1983). The logic of decision. Chicago: Chicago University Press.Google Scholar
  12. Jeffrey R. C. (1988) How to probabilize a Newcomb problem. In: Fetzer J. H. (eds) Probability and causality. Reidel, Dordrecht, pp 241–251CrossRefGoogle Scholar
  13. Jeffrey R. C. et al (1996) Decision kinematics. In: Arrow K. J. (eds) The rational foundations of economic behaviour. Macmillan, Basingstoke, pp 3–19Google Scholar
  14. Jensen F. V. (2001) Bayesian networks and decision graphs. Springer, BerlinGoogle Scholar
  15. Joyce J. M. (1999) The foundations of causal decision theory. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  16. Kavka G. (1983) The toxin puzzle. Analysis 43: 33–36CrossRefGoogle Scholar
  17. Kyburg H. E. Jr. (1980) Acts and conditional probabilities. Theory and Decision 12: 149–171CrossRefGoogle Scholar
  18. Levi I. (1986) Hard choices. Decision making under unresolved conflict. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  19. Lewis D. (1981a) Causal decision theory. Australasian Journal of Philosophy 59: 5–30CrossRefGoogle Scholar
  20. Lewis D. (1981b) Why Ain’cha rich?. Noûs 15: 377–380CrossRefGoogle Scholar
  21. McClennen E. F. (1990) Rationality and dynamic choice. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  22. Meek C., Glymour C. (1994) Conditioning and intervening. British Journal for the Philosophy of Science 45: 1001–1021CrossRefGoogle Scholar
  23. Nozick R. et al (1969) Newcomb’s problem and two principles of choice. In: Rescher N. (eds) Essays in honor of Carl G. Hempel. Reidel, Dordrecht, pp 114–146Google Scholar
  24. Pearl J. (1988) Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann, San Mateo, CAGoogle Scholar
  25. Pearl J. (2000) Causality. Models, reasoning, and inference. Cambridge University Press, CambridgeGoogle Scholar
  26. Rabinowicz W. (2002) Does practical deliberation crowd out self-prediction?. Erkenntnis 57: 91–122CrossRefGoogle Scholar
  27. Richardson T., Spirtes P. (2002) Ancestral Markov graphical models. Annals of Statistics 30: 962–1030CrossRefGoogle Scholar
  28. Richardson T., Spirtes P. (2003) Causal inference via ancestral graph models. In: Green P., Hjort N., Richardson S. (eds) Highly structured stochastic systems. Oxford University Press, Oxford, pp 83–105Google Scholar
  29. Savage, L. J. (1954/1972). The foundations of statistics (2nd ed.). New York: Dover.Google Scholar
  30. Shafer G. (1996) The art of causal conjecture. MIT Press, Cambridge, MAGoogle Scholar
  31. Skyrms B. (1984) Pragmatics and empiricism. Yale University Press, New HavenGoogle Scholar
  32. Sobel J. H. (1994) Taking chances: Essays on rational choice. Cambridge University Press, CambridgeGoogle Scholar
  33. Spirtes, P., Glymour, C., & Scheines, R. (1993/2000). Causation, prediction, and search (2nd ed.). Berlin: Springer.Google Scholar
  34. Spohn, W. (1976/1978). Grundlagen der Entscheidungstheorie. Ph.D. Thesis, University of Munich, Munich (1976), Scriptor, Kronberg/Ts (1978).Google Scholar
  35. Spohn W. (1977) Where Luce and Krantz do really generalize Savage’s decision model. Erkenntnis 11: 113–134CrossRefGoogle Scholar
  36. Spohn W. (1980) Stochastic independence, causal independence, and shieldability. Journal of Philosophical Logic 9: 73–99CrossRefGoogle Scholar
  37. Spohn W. (2001) Bayesian nets are all there is to causal dependence. In: Costantini D., Galavotti M. C., Suppes P. (eds) Stochastic dependence and causality. CSLI Publications, Stanford, pp 157–172Google Scholar
  38. Spohn W. (2003) Dependency equilibria and the causal structure of decision and game situations. Homo Oeconomicus 20: 195–255Google Scholar
  39. Spohn W. (2009) Why the received models of considering preference change must fail. In: Grüne-Yanoff T., Hansson S. O. (eds) Preference change: Approaches from philosophy, economics and psychology. Springer, DordrechtGoogle Scholar
  40. Spohn, W. (forthcoming). The laws of belief. Ranking theory and its philosophical applications. Oxford: Oxford University Press.Google Scholar
  41. Strotz, R. H. (1955/1956). Myopia and inconsistency in dynamic utility maximization. Review of Economic Studies, 23, 165–180.Google Scholar
  42. Verma T., Pearl J. et al (1990) Causal networks: Semantics and expressiveness. In: Shachter R. D. (eds) Uncertainty in artificial intelligence. North-Holland, Amsterdam, pp 69–76Google Scholar
  43. Wright S. (1934) The method of path coefficients. Annals of Mathematical Statistics 5: 161–215CrossRefGoogle Scholar
  44. Yaari M. E. (1977) Endogeneous changes in tastes: A philosophical discussion. Erkenntnis 11: 157–196CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of KonstanzKonstanzGermany

Personalised recommendations