, Volume 187, Issue 2, pp 471–487 | Cite as

Intractability and the use of heuristics in psychological explanations

  • Iris van RooijEmail author
  • Cory D. Wright
  • Todd Wareham
Open Access


Many cognitive scientists, having discovered that some computational-level characterization f of a cognitive capacity \({\phi}\) is intractable, invoke heuristics as algorithmic-level explanations of how cognizers compute f. We argue that such explanations are actually dysfunctional, and rebut five possible objections. We then propose computational-level theory revision as a principled and workable alternative.


Psychological explanation Computational-level theory Computational complexity Intractability Heuristics NP-hard Algorithm Approximation 


Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. Anderson J. R. (1990) The adaptive character of thought. Lawrence Erlbaum Associates, Hillsdale, NJGoogle Scholar
  2. Ausiello G., Crescenzi P., Gambosi G., Kann V., Marchetti-Spaccamela A., Protasi M. (1999) Complexity and approximation: Combinatorial optimization problems and their approximability properties. Springer, BerlinGoogle Scholar
  3. Barton G., Berwick R., Ristad E. (1987) Computational complexity and natural language. The MIT Press, Cambridge, MAGoogle Scholar
  4. Bechtel W., Wright C. (2009) What is psychological explanation. In: Calvo P., Symons J. (eds) Routledge companion to the philosophy of psychology. Routledge, New York, pp 113–130Google Scholar
  5. Bylander T. (1994) The computational complexity of propositional STRIPS planning. Artificial Intelligence 89(1–2): 165–204CrossRefGoogle Scholar
  6. Carruthers P. (2005) Simple heuristics meet massive modularity. In: Carruthers P., Laurence S., Stich S. (eds) The innate mind. Vol. 2: Culture and cognition. Oxford University Press, Oxford, pp 181–198Google Scholar
  7. Chater N., Tenenbaum J. B., Yuille A. (2006) Probabilistic models of cognition. Trends in Cognitive Science 10(7): 287–293CrossRefGoogle Scholar
  8. Cherniak C. (1986) Minimum rationality. The MIT Press, Cambridge, MAGoogle Scholar
  9. Cook, S. (1971). The complexity of theorem-proving procedures. In Proceedings of the 3rd annual ACM symposium on the theory of computing. New York, pp. 151–158.Google Scholar
  10. Downey R., Fellows M. (1999) Parameterized complexity. Springer, BerlinCrossRefGoogle Scholar
  11. Forbus, K., & Oblinger, D. (1990). Making SME Greedy and Pragmatic. In Proceedings of the twelfth annual conference of the cognitive science society. Hillsdale, NJ, pp. 61–68.Google Scholar
  12. Fortnow L. (2009) The status of the P versus NP problem. Communications of the ACM 52(9): 78–86CrossRefGoogle Scholar
  13. Franks B. (1995) On explanation in the cognitive sciences: Competence, idealization, and the failure of the classical cascade. British Journal of Philosophy of Science 46(4): 475–502CrossRefGoogle Scholar
  14. Frixione M. (2001) Tractable competence. Minds and Machines 11: 379–397CrossRefGoogle Scholar
  15. Garey M. R., Johnson D. S. (1979) Computers and intractability: A guide to the theory of NP-completeness. W.H. Freeman, San Francisco, CAGoogle Scholar
  16. Gentner D. (1983) Structure-mapping: A theoretical framework for analogy. Cognitive Science 7: 155–170CrossRefGoogle Scholar
  17. Gentner D., Markman A. (1995) Similarity is like analogy. In: Cacciari C. (ed.) Similarity in language, thought, and perception. BREPOLS, Brussels, pp 111–147Google Scholar
  18. Gigerenzer G. (2008) Why heuristics work. Perspectives on Psychological Science 3: 20–29CrossRefGoogle Scholar
  19. Gigerenzer G., Goldstein D. G. (1996) Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review 103: 650–669CrossRefGoogle Scholar
  20. Kieseppä I. (1996) Truthlikeness for multidimensional, quantitative cognitive problems. Kluwer, DordrechtGoogle Scholar
  21. Levesque H. J. (1988) Logic and the complexity of reasoning. Journal of Philosophical Logic 17: 355–389CrossRefGoogle Scholar
  22. Mahajan M., Raman V. (1999) Parameterizing above guaranteed values: MaxSat and MaxCut. Journal of Algorithms 31: 335–354CrossRefGoogle Scholar
  23. Markman A., Gentner D. (2000) Structure mapping in the comparison process. The American Journal of Psychology 113: 501–538CrossRefGoogle Scholar
  24. Marr D. (1982) Vision: A computational investigation into the human representation and processing visual information. W. H. Freeman, San Francisco, CAGoogle Scholar
  25. Marr D., Poggio T. (1977) From understanding computation to understanding neural circuitry. Neuroscience Research Progress Bulletin 15: 470–488Google Scholar
  26. Millgram E. (2000) Coherence: The price of the ticket. Journal of Philosophy 97: 82–93CrossRefGoogle Scholar
  27. Piccinini G. (2004) Functionalism, computationalism, and mental states. Studies in the History of Philosophy of Science 35: 811–833CrossRefGoogle Scholar
  28. Piccinini G. (2010) The mind as neural software? Understanding functionalism, computationalism, and computational functionalism. Philosophy and Phenomenological Research 81: 269–311CrossRefGoogle Scholar
  29. Samuels R. (2005) The complexity of cognition: Tractability arguments for massive modularity. In: Carruthers P., Laurence S., Stich S. (eds) The innate mind, Vol. 1: Structure and contents. Oxford University Press, Oxford, pp 107–121Google Scholar
  30. Schöning, U. (1990). Complexity cores and hard problem instances. In T. Asano, T. Ibaraki, H. Imai, & T. Nishizeki (Eds.), Proceedings of the international symposium on algorithms (SIGAL’90). Berlin, pp. 232–240.Google Scholar
  31. Thagard P. (1998) Computation and the philosophy of science. In: Bynum T., Moor J. (eds) The digital phoenix: How computers are changing philosophy. Blackwell, Oxford, pp 48–61Google Scholar
  32. Thagard P. (2000) Coherence in thought and action. The MIT Press, Cambridge, MAGoogle Scholar
  33. Thagard P., Shelley C. (1997) Abductive reasoning: Logic, visual thinking, and coherence. In: Chiara M.-L. D., Doets K., Mundici D., van Bentham J. (eds) Logic and scientific methods. Kluwer, Dordrecht, pp 412–427Google Scholar
  34. Thagard P., Verbeurgt K. (1998) Coherence as constraint satisfaction. Cognitive Science 22(1): 1–24CrossRefGoogle Scholar
  35. Todd P., Gigerenzer G. (2000) Précis of simple heuristics that make us smart. Behavioral and Brain Sciences 23: 727–780CrossRefGoogle Scholar
  36. Tsotsos J. K. (1990) Analyzing vision at the complexity level. Behavioral and Brain Sciences 13: 423–469CrossRefGoogle Scholar
  37. Turing A. (1936) On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 42: 230–265CrossRefGoogle Scholar
  38. van Rooij I. (2008) The tractable cognition thesis. Cognitive Science 32: 939–984CrossRefGoogle Scholar
  39. Veale, T., & Keane M. T. (1997). The competence of sub-optimal theories of structure mapping on hard analogies. In Proceedings of the 15th international joint conference on artificial intelligence (IJCAI’97), Vol. 1. pp. 232–237.Google Scholar
  40. Wigderson, A. (2007). P, NP and mathematics—a computational complexity perspective. In: Proceedings of ICM 2006, Vol. I. Zurich, pp. 665–712.Google Scholar
  41. Wright C., Bechtel W. (2007) Mechanisms and psychological explanation. In: Thagard P. (ed.) Handbook of philosophy of psychology and cognitive science. Elsevier, New York, pp 31–79CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Iris van Rooij
    • 1
    Email author
  • Cory D. Wright
    • 2
  • Todd Wareham
    • 3
  1. 1.Donders Institute for Brain, Cognition, and BehaviourRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Department of PhilosophyCalifornia State University Long BeachLong BeachUSA
  3. 3.Department of Computer ScienceMemorial University of NewfoundlandNLCanada

Personalised recommendations