, Volume 184, Issue 3, pp 431–454 | Cite as

Semantic information and the network theory of account

  • Luciano Floridi


The article addresses the problem of how semantic information can be upgraded to knowledge. The introductory section explains the technical terminology and the relevant background. Section 2 argues that, for semantic information to be upgraded to knowledge, it is necessary and sufficient to be embedded in a network of questions and answers that correctly accounts for it. Section 3 shows that an information flow network of type A fulfils such a requirement, by warranting that the erotetic deficit, characterising the target semantic information t by default, is correctly satisfied by the information flow of correct answers provided by an informational source s. Section 4 illustrates some of the major advantages of such a Network Theory of Account (NTA) and clears the ground of a few potential difficulties. Section 5 clarifies why NTA and an informational analysis of knowledge, according to which knowledge is accounted semantic information, is not subject to Gettier-type counterexamples. A concluding section briefly summarises the results obtained.


Account Epistemic logic Explanation Gettier problem Information theory Network theory Network theory of account Philosophy of information Semantic information 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achinstein P. (1983) The nature of explanation. Oxford University Press, New York, LondonGoogle Scholar
  2. Ahlswede R., Cai N., Li S.-Y. R., Wai-Ho Yeung R. (2000) Network information flow. IEEE Transactions on Information Theory 46(4): 1204–1216CrossRefGoogle Scholar
  3. Ahuja R. K., Magnanti T. L., Orlin J. B. (1993) Network flows : Theory, algorithms, and applications. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  4. Bar-Hillel, Y., & Carnap, R. (1953). An outline of a theory of semantic information repr. in Bar-Hillel [1964], pp. 221–274.Google Scholar
  5. BonJour L. (1985) The structure of empirical knowledge. Harvard University Press, Cambridge, MAGoogle Scholar
  6. Bromberger S. (1966) Why-Questions. In: Brody B. A. (Ed.) Readings in the philosophy of science. Prentice Hall, Inc, Englewood Cliffs, pp 66–84Google Scholar
  7. Burgin M., Kuznetsov V. (1994) Scientific problems and questions from a logical point of view. Synthese 100(1): 1–28CrossRefGoogle Scholar
  8. Chellas B. F. (1980) Modal logic: An introduction. Cambridge University Press, CambridgeGoogle Scholar
  9. Chen W.-K. (2003) Net theory and its applications: Flows in networks. Imperial College Press, LondonGoogle Scholar
  10. Colburn, T. R. (2000a). Information, thought, and knowledge. Proceedings of the world multiconference on systemics, cybernetics and informatics, pp. 467–471.Google Scholar
  11. Colburn T. R. (2000b) Philosophy and computer science. M.E. Sharpe, Armonk, NYGoogle Scholar
  12. Cormen T. H., Leiserson C. E., Rivest R. L., Stein C. (2001) Introduction to algorithms (2nd ed.). MIT press, Cambridge, MA, LondonGoogle Scholar
  13. Devlin K. J. (1991) Logic and information. Cambridge University Press, CambridgeGoogle Scholar
  14. Dodig-Crnkovic, G. (2005). System modeling and information semantics. Proceedings of the fifth promote IT conference, Borlänge, Sweden, edited by Janis Bubenko, Owen Eriksson, Hans Fernlund, and Mikael Lind (Studentlitteratur: Lund).Google Scholar
  15. Dretske, F. I. (1981). Knowledge and the flow of information (Oxford: Blackwell). Reprinted in 1999 (Stanford, CA: CSLI Publications).Google Scholar
  16. Dretske F. I. (1988) Explaining behavior: Reasons in a world of causes. MIT Press, Cambridge, MAGoogle Scholar
  17. Dummett M. A. E. (2004) Truth and the past. Columbia University Press, New York; ChichesterGoogle Scholar
  18. Elias, P., Feinstein, A., & Shannon, C. E. (1956). Note on maximum flow through a network. IRE Transactions on Information Theory, IT-2, pp. 117–119.Google Scholar
  19. Fagin R., Halpern J. Y., Moses Y., Vardi M. Y. (1995) Reasoning about knowledge. MIT Press, Cambridge, MA, LondonGoogle Scholar
  20. Fetzer J. H. (2004) Information: Does it have to be true?. Minds and Machines 14(2): 223–229CrossRefGoogle Scholar
  21. Floridi, L. (2004a) Information. In L. Floridi, The Blackwell guide to the philosophy of computing and information, (pp. 40–61). Oxford, NY: Blackwell.Google Scholar
  22. Floridi L. (2004b) Open problems in the philosophy of information. Metaphilosophy 35(4): 554–582CrossRefGoogle Scholar
  23. Floridi L. (2004c) Outline of a theory of strongly semantic information. Minds and Machines 14(2): 197–222CrossRefGoogle Scholar
  24. Floridi L. (2005) Is information meaningful data?. Philosophy and Phenomenological Research 70(2): 351–370CrossRefGoogle Scholar
  25. Floridi L. (2006) The logic of being informed. Logique et Analyse 49(196): 433–460Google Scholar
  26. Floridi L. (2007) In defence of the veridical nature of semantic information. The European Journal of Analytic Philosophy 3(1): 1–18Google Scholar
  27. Floridi, L. (2008a). Data. In W. A. Darity, International encyclopedia of the social sciences. Detroit: Macmillan.Google Scholar
  28. Floridi L. (2008b) Understanding epistemic relevance. Erkenntnis 69(1): 69–92CrossRefGoogle Scholar
  29. Floridi L. (2010a) Information—a very short introduction. Oxford University Press, OxfordGoogle Scholar
  30. Floridi L. (2010b) The philosophy of information. Oxford University Press, OxfordGoogle Scholar
  31. Floridi, L. (2010c). Semantic information and the correctness theory of truth. Erkenntnis. doi: 10.1007/s10670-010-9249-8.
  32. Ford L. R., Fulkerson D. R. (1956) Maximal flow through a network. Canadian Journal of Mathematics 8: 399–404CrossRefGoogle Scholar
  33. Grice H. P. (1989) Studies in the way of words. Harvard University Press, Cambridge, MAGoogle Scholar
  34. Jungnickel D. (1999) Graphs, networks, and algorithms. Springer, Berlin, New YorkGoogle Scholar
  35. Koura A. (1988) An approach to why-questions. Synthese 74(2): 191–206CrossRefGoogle Scholar
  36. Mayr, E. (1961). Cause and effect in biology. Science, 134 1501–1506. Also in E. Mayr, Toward a new philosophy of biology:Observations of an evolutionist (Cambridge, MA: Harvard University Press, 1988) and in E. Mayr (ed.), Evolution and the diversity of life (Cambridge, MA: Harvard University Press, 1997).Google Scholar
  37. Newman, M. E. J., Barabási, A.-L., Watts, D. J. (eds) (2006) The structure and dynamics of networks. Princeton University Press, Princeton, NJGoogle Scholar
  38. Sequoiah-Grayson S. (2007) The metaphilosophy of information. Minds and Machines 17(3): 331–344CrossRefGoogle Scholar
  39. Stering R. (2008) Police officer’s handbook: An analytical and administrative guide. Jones and Bartlett Publishers, Sudbury, MAGoogle Scholar
  40. Taylor C. C. W. (1967) Plato and the mathematicians: An examination of professor Hare’s views. The Philosophical Quarterly 17(68): 193–203CrossRefGoogle Scholar
  41. Taylor C. C. W. (2008) Plato’s epistemology. In: Fine G. (eds) The Oxford handbook of Plato. Oxford University Press, Oxford, NY, pp 165–190CrossRefGoogle Scholar
  42. Van Fraassen B. C. (1980) The scientific image. Clarendon Press, OxfordGoogle Scholar
  43. Walton, D. (2007). Dialogical models of explanation. In Explanation-aware computing: Papers from the 2007 Aaai Workshop, Association for the advancement of artificial intelligence (AAAI Press), pp. 1–9.Google Scholar
  44. Whaley, B. B., Samter, W. (eds) (2006) Explaining communication: Contemporary theories and exemplars. Routledge, LondonGoogle Scholar
  45. Yeung R. W. (2008) Information theory and network coding. Springer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Research Chair in Philosophy of Information and GPI, Department of PhilosophyUniversity of HertfordshireHatfieldUK
  2. 2.Faculty of Philosophy and IEGUniversity of OxfordOxfordUK

Personalised recommendations