, Volume 184, Issue 3, pp 261–286 | Cite as

Confusion and dependence in uses of history



Many people argue that history makes a special difference to the subjects of biology and psychology, and that history does not make this special difference to other parts of the world. This paper will show that historical properties make no more or less of a difference to biology or psychology than to chemistry, physics, or other sciences. Although historical properties indeed make a certain kind of difference to biology and psychology, this paper will show that historical properties make the same kind of difference to geology, sociology, astronomy, and other sciences. Similarly, many people argue that nonhistorical properties make a special difference to the nonbiological and the nonpsychological world. This paper will show that nonhistorical properties make the same difference to all things in the world when it comes to their causal behavior and that historical properties make the same difference to all things in the world when it comes to their distributions. Although history is special, it is special in the same way to all parts of the world.


Natural kind Essential properties Explanation Behavior Historical properties Generalizations Distributions Causal activity Historical kinds Copied kinds Real kinds Prediction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amundson R., Lauder G. (1994) Function without purpose: The uses of causal role function in evolutionary biology. Biology and Philosophy 9: 443–469. doi:10.1007/BF00850375 CrossRefGoogle Scholar
  2. Ariew A. (2003) Ernst Mayr’s ‘ultimate/proximate’ distinction reconsidered and reconstructed. Biology and Philosophy 18: 553–565. doi:10.1023/A:1025565119032 CrossRefGoogle Scholar
  3. Bakker T. C. M., Milinski M. (1991) Sequential female choice and the previous male effect in sticklebacks. Behavioral Ecology and Sociobiology 29: 205–210. doi:10.1007/BF00166402 CrossRefGoogle Scholar
  4. Bakker T. C. M., Milinski M. (1993) The advantages of being red: Sexual selection in the stickleback. Marine and Freshwater Behaviour and Physiology 23: 287–300. doi:10.1080/10236249309378870 CrossRefGoogle Scholar
  5. Bechtel W. (1986) Teleological functional analyses and the hierarchical organization of nature. In: Rescher N. (eds) Teleology and natural science. University Press of America, Landham, MD, pp 26–48Google Scholar
  6. Bechtel W., Mundale J. (1999) Multiple realizability revisited: Linking cognitive and neural states. Philosophy of Science 66: 175–207. doi:10.1086/392683 CrossRefGoogle Scholar
  7. Bell, M. A., Foster, S. A. (eds) (1994) The evolutionary biology of the threespine stickleback. Oxford University Press, OxfordGoogle Scholar
  8. Bickle J. (2006a) Reducing mind to molecular pathways: Explicating the reductionism implicit in current cellular and molecular neuroscience. Synthese 151: 411–434. doi:10.1007/s11229-006-9015-2 CrossRefGoogle Scholar
  9. Bickle J. (2006b) Ruthless reductionism in recent neuroscience. IEEE Transactions on Systems, Man and Cybernetics, Part C 36: 134–140. doi:10.1109/TSMCC.2006.871130 CrossRefGoogle Scholar
  10. Bickle J. (2007) Ruthless reductionism and social cognition. Journal of Physiology-Paris 101: 230–235. doi:10.1016/j.jphysparis.2007.11.009 CrossRefGoogle Scholar
  11. Bickle J. (2008) Real reduction in real neuroscience: Metascience, not philosophy of science (and certainly not metaphysics!). In: Hohwy J., Kallestrup J. (eds) Being reduced: New essays on reduction, explanation, and causation. Oxford University Press, Oxford, pp 34–51Google Scholar
  12. Bickle J., Avison M., Schmithorst V., Landreth A., Holland S. (2003) Bridging the cognitive-cellular neuroscience gap empirically: A study combining physiology, modeling and fMRI. Journal of Experimental & Theoretical Artificial Intelligence 15: 161–175. doi:10.1080/0952813021000055225 CrossRefGoogle Scholar
  13. Boyd R. (1992) Constructivism, realism, and philosophical method. In: Earman J. (eds) Inference, explanation, and other frustrations: Essays in the philosophy of science. University of California Press, Berkeley, CA, pp 131–198Google Scholar
  14. Boyd R. (1999) Homeostasis, species, and higher taxa. In: Wilson R.A. (eds) Species: New interdisciplinary essays. MIT Press, Cambridge, MAGoogle Scholar
  15. Boyd R. (1999b) Kinds, complexity and multiple realization. Philosophical Studies 95: 67–98. doi:10.1023/A:1004511407133 CrossRefGoogle Scholar
  16. Boyd, R. (1999c). Kinds as the ‘Workmanship of men’: Realism, constructivism, and natural kinds. In J. Nida-Rümelin (Ed.), Rationalität, realismus, revision: Proceedings of the third international congress, Gesellschaft für Analytische Philosophie, de Gruyter (pp. 52–89).Google Scholar
  17. Boyd R. (2001) Reference, (in)commensurability and meanings: Some (perhaps) unanticipated complexities. In: Hoyningen-Huene P., Sankey H. (eds) Incommensurability and related matters. Kluwer, Dordrecht, pp 1–63Google Scholar
  18. Brooks D., McLennan D. (1991) Phylogeny, ecology, and behavior: A research program in comparative biology. University of Chicago Press, Chicago, ILGoogle Scholar
  19. Carter W. R., Hestevold H. S. (1994) On passage and persistence. American Philosophical Quarterly 31: 269–284Google Scholar
  20. Chan Y. F., Marks M. E., Jones F. C., Villarreal G., Shapiro M. D., Brady S. D. et al (2010) Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327: 302–305. doi:10.1126/science.1182213 CrossRefGoogle Scholar
  21. Colosimo P., Hosemann K., Balabhadra S., Villareal G., Dickson M., Grimwood J. et al (2005) Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science 307: 1928–1933. doi:10.1126/science.1107239 CrossRefGoogle Scholar
  22. Colosimo P., Peichel C., Nereng K., Blackman B., Shapiro M., Schluter D. et al (2004) The genetic architecture of parallel armor plate reduction in threespine sticklebacks. PLoS Biol 2(5): E109. doi:10.1371/journal.pbio.0020109 CrossRefGoogle Scholar
  23. Cummins R. (1975) Functional analysis. Journal of Philosophy 72: 741–765CrossRefGoogle Scholar
  24. Cummins R. (2002) Neo-teleology. In: Cummins R., Ariew A., Perlman M. (eds) Functions: New essays in the philosophy of psychology and biology. Oxford University Press, Oxford, pp 157–173Google Scholar
  25. Davies P. S. (1996) Discovering the functional mesh: On the methods of evolutionary psychology. Minds and Machines 6: 559–585. doi:10.1007/BF00389659 Google Scholar
  26. Davies P. S. (2000) The nature of natural norms: Why selected functions are systemic capacity functions. Nous 34: 85–107. doi:10.1111/0029-4624.00203 CrossRefGoogle Scholar
  27. Davies P. S. (2001) Norms of nature: Naturalism and the nature of functions. MIT Press, Cambridge, MAGoogle Scholar
  28. Dretske F. (1998) Action and autonomy. In: Norton J., Earman J. (eds) Cosmos of science. University of Pittsburgh Press, Pittsburgh, PA, pp 515–529Google Scholar
  29. D’Zmura M., Deng S., Lappas T., Thorpe S., Srinivasan R. (2009) Toward EEG sensing of imagined speech. In: Jacko J. A. (eds) Human–computer interaction: New trends, part I, HCII 2009, LNCS 5610. Springer, Berlin, pp 40–48. doi:10.1007/978-3-642-02574-7_5 Google Scholar
  30. Elder C. (1995) A different kind of natural kind. Australasian Journal of Philosophy 73: 516–531. doi:10.1080/00048409512346871 CrossRefGoogle Scholar
  31. Elder C. (1996) On the reality of medium-sized objects. Philosophical Studies 83: 191–211. doi:10.1007/BF00354288 CrossRefGoogle Scholar
  32. Elder C. (2004) Real natures and familiar objects. MIT Press, Cambridge, MAGoogle Scholar
  33. Enc B. (1995) Units of behavior. Philosophy of Science 62: 523–542. doi:10.1086/289884 CrossRefGoogle Scholar
  34. Enc B., Adams F. (1992) Functions and goal directedness. Philosophy of Science 59: 635–654. doi:10.1086/289699 CrossRefGoogle Scholar
  35. Fitzgerald G. J. (1993) Seeing red, turning red. Reviews in Fish Biology and Fisheries 3: 286–292. doi:10.1007/BF00043931 CrossRefGoogle Scholar
  36. Garfinkel A. (1981) Forms of explanation. Yale University Press, New Haven, CTGoogle Scholar
  37. Godfrey-Smith P. (1994) A modern history theory of functions. Nous 28: 344–362CrossRefGoogle Scholar
  38. Grantham T., Nichols S. (1999) Evolutionary psychology: Ultimate explanations and Panglossian predictions. In: Hardcastle V.G. (eds) Where biology meets psychology: Philosophical essays. MIT Press, Cambridge, MA, pp 47–66Google Scholar
  39. Griffiths, P. E. (1996). Darwinism, process structuralism and natural kinds. Philosophy of Science, 63(Supplement: PSA 1996 Contributed Papers), S1–S9. doi:10.1086/289930
  40. Griffiths P. E. (1997) What emotions really are: The problem of psychological categories. University of Chicago Press, Chicago, ILGoogle Scholar
  41. Griffiths P.E. (1999) Squaring the circle: Natural kinds with historical essences. In: Wilson R.A. (eds) Species: New interdisciplinary essays. MIT Press, Cambridge, MAGoogle Scholar
  42. Hardcastle V.G. (1999) Understanding functions: A pragmatic approach. In: Hardcastle V.G. (eds) Where biology meets psychology: Philosophical essays. MIT Press, Cambridge, MAGoogle Scholar
  43. Haynes J. (2008) Detecting deception from neuroimaging signals—a data-driven perspective. Trends in Cognitive Sciences 12: 126–127. doi:10.1016/j.tics.2008.01.003 CrossRefGoogle Scholar
  44. Haynes J. (2009) Decoding visual consciousness from human brain signals. Trends in Cognitive Sciences 13: 194–202. doi:10.1016/j.tics.2009.02.004 CrossRefGoogle Scholar
  45. Haynes J., Rees G. (2006) Decoding mental states from brain activity in humans. Nature Reviews Neuroscience 7: 523–534. doi:10.1038/nrn1931 CrossRefGoogle Scholar
  46. Haynes J., Sakai K., Rees G, Gilbert S., Frith C., Passingham R. (2007) Reading hidden intentions in the human brain. Current Biology 17: 323–328. doi:10.1016/j.cub.2006.11.072 CrossRefGoogle Scholar
  47. Hendry A., Bolnick D., Berner D., Peichel C. (2009) Along the speciation continuum in stickleback. Journal of Fish Biology 75: 2000–2036. doi:10.1111/j.1095-8649.2009.02419.x CrossRefGoogle Scholar
  48. Ishikawa M., Mori S. (2000) Mating success and male courtship behaviors in three populations of the threespine stickleback. Behaviour 137: 1065–1080. doi:10.1163/156853900502439 CrossRefGoogle Scholar
  49. Ishikawa M., Mori S., Nagata Y. (2006) Intraspecific differences in patterns of courtship behaviours between the Pacific Ocean and Japan Sea forms of the three-spined stickleback. Journal of Fish Biology 69: 938–944. doi:10.1111/j.1095-8649.2006.01135.x CrossRefGoogle Scholar
  50. Just M. A., Cherkassky V. L., Aryal S., Mitchell T. M. (2010) A neurosemantic theory of concrete noun representation based on the underlying brain codes. PLos ONE 5: e8622. doi:10.1371/journal.pone.0008622 CrossRefGoogle Scholar
  51. Kasting J., Catling D. (2003) Evolution of a habitable planet. Annual Review of Astronomy and Astrophysics 41: 429–463. doi:10.1146/annurev.astro.41.071601.170049 CrossRefGoogle Scholar
  52. Kay K. N., Gallant J. L. (2009) I can see what you see. Nature Neuroscience 12: 245–246. doi:10.1038/nn0309-245 CrossRefGoogle Scholar
  53. Kay K. N., Naselaris T., Prenger R. J., Gallant J. L. (2008) Identifying natural images from human brain activity. Nature 452: 352–355. doi:10.1038/nature06713 CrossRefGoogle Scholar
  54. Kim J. (1991) Dretske on how reasons explain behavior. In: McLaughlin B. (eds) Dretske and his critics. Blackwell, Cambridge, MA, pp 52–72Google Scholar
  55. Kingsley D., Peichel C. (2007) The molecular genetics of evolutionary change in sticklebacks. In: Ostlund-Nilsson S., Mayer I., Huntingford F. A. (eds) Biology of the three-spine stickleback. CRC Press, Boca Raton, FL, pp 41–81Google Scholar
  56. Kitano J., Mori S., Peichel C. (2007) Phenotypic divergence and reproductive isolation between sympatric forms of Japanese threespine sticklebacks. Biological Journal of the Linnean Society 91: 671–685. doi:10.1111/j.1095-8312.2007.00824.x CrossRefGoogle Scholar
  57. Kitano, J., Mori, S., & Peichel, C. (2008). Divergence of male courtship displays between sympatric forms of anadromous threespine stickleback. Behaviour, 145, 443–461.
  58. Kitano J., Ross J. A., Mori S., Kume M., Jones F. F., Chan Y. F. et al (2009) A role for a neo-sex chromosome in stickleback speciation. Nature 461: 1079–1083. doi:10.1038/nature08441 CrossRefGoogle Scholar
  59. Kump L. R., Kasting J., Crane R. (2004) The Earth system. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  60. Lauder G. V. (1995) On the inference of function from structure. In: Thomason J. J. (eds) Functional morphology and vertebrate paleontology. Cambridge University Press, New York, pp 1–18Google Scholar
  61. McKinnon J., Mori S., Blackman B., Kingsley D., Jamieson L., Chou J. et al (2004) Evidence for ecology’s role in speciation. Nature 429: 294–298. doi:10.1038/nature02556 CrossRefGoogle Scholar
  62. McKinnon J. S., Rundle H. D. (2002) Speciation in nature: The threespine stickleback model systems. Trends in Ecology & Evolution 17: 480–488. doi:10.1016/S0169-5347(02)02579-X CrossRefGoogle Scholar
  63. McKitrick J. (2003) A case for extrinsic dispositions. Australasian Journal of Philosophy 81: 155–174. doi:10.1080/713659629 CrossRefGoogle Scholar
  64. McLennan, D. (1991). Integrating phylogeny and experimental ethology: From pattern to process. Evolution, 45, 1773–1789.
  65. McLennan, D. (1993). Phylogenetic relationships in the Gasterosteidae: An updated tree based on behavioral characters with a discussion of homoplasy. Copeia, 1993(2), 318–326.
  66. McLennan D. (2007) The umwelt of the three-spined stickleback. In: Ostlund-Nilsson S., Mayer I., Huntingford F. A. (eds) Biology of the three-spine stickleback. CRC Press, Boca Raton, FL, pp 179–224Google Scholar
  67. McLennan D., Brooks D., McPhail J. D. (1988) The benefits of communication between comparative ethology and phylogenetic systematics: A case study using gasterosteid fishes. Canadian Journal of Zoology 66: 2177–2190. doi:10.1139/z88-325 CrossRefGoogle Scholar
  68. McLennan D., McPhail J. D. (1989a) Experimental investigations of the evolutionary significance of sexually dimorphic nuptial colouration in Gasterosteus aculeatus (L.): Temporal changes in the structure of the male mosaic signal. Canadian Journal of Zoology 67: 1767–1777. doi:10.1139/z89-253 CrossRefGoogle Scholar
  69. McLennan D., McPhail J. D. (1989b) Experimental investigations of the evolutionary significance of sexually dimorphic nuptial colouration in Gasterosteus aculeatus (L.): The relationship between male colour and male behaviour. Canadian Journal of Zoology 67: 1778–1782. doi:10.1139/z89-254 CrossRefGoogle Scholar
  70. Merricks T. (1994) Endurance and indiscernibility. Journal of Philosophy 91: 165–184CrossRefGoogle Scholar
  71. Merricks T. (1995) On the incompatibility of enduring and perduring entities. Mind 104: 523–531. doi:10.1093/mind/104.415.521 CrossRefGoogle Scholar
  72. Merricks T. (1999) Persistence, parts, and presentism. Noûs 33: 421–438. doi:10.1111/0029-4624.00162 CrossRefGoogle Scholar
  73. Milinski M., Bakker T. C. M. (1990) Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature 344: 330–333. doi:10.1038/344330a0 CrossRefGoogle Scholar
  74. Miller R. W. (1978) Methodological individualism and social explanation. Philosophy of Science 45: 387–414. doi:10.1086/288814 CrossRefGoogle Scholar
  75. Miller C., Beleza S., Pollen A., Schluter D., Kittles R., Shriver M., Kingsley D. (2007) cis-Regulatory changes in Kit Ligand expression and parallel evolution of pigmentation in sticklebacks and humans. Cell 131: 1179–1189. doi:10.1016/j.cell.2007.10.055 CrossRefGoogle Scholar
  76. Millikan R. (1989) In defense of proper functions. Philosophy of Science 56: 288–302. doi:10.1086/289488 CrossRefGoogle Scholar
  77. Millikan R. (1996) On swampkinds. Mind & Language 11: 103–117. doi:10.1111/j.1468-0017.1996.tb00035.x CrossRefGoogle Scholar
  78. Millikan R. (1999) Historical kinds and the special sciences. Philosophical Studies 95: 45–65. doi:10.1023/A:1004532016219 CrossRefGoogle Scholar
  79. Millikan R. (2000) On clear and confused ideas: An essay about substance concepts. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  80. Mitchell T. M., Shinkareva S. V., Carlson A., Chang K.-M., Malave V. L., Mason R. A. et al (2008) Predicting human brain activity associated with the meanings of nouns. Science 320: 1191–1195. doi:10.1126/science.1152876 CrossRefGoogle Scholar
  81. Mundale J., Bechtel W. (1996) Integrating neuroscience, psychology, and evolutionary biology through a teleological conception of function. Minds and Machines 6: 481–505. doi:10.1007/BF00389655 Google Scholar
  82. Naselaris T., Prenger R., Kay K., Oliver M., Gallant J. (2009) Bayesian reconstruction of natural images from human brain activity. Neuron 63: 902–915. doi:10.1016/j.neuron.2009.09.006 CrossRefGoogle Scholar
  83. Palatucci, M., Pomerleau, D. A., Hinton, G. E., & Mitchell, T. (2009). Zero-shot learning with semantic output codes. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural information processing systems, (vol. 22, pp. 1410–1418).Google Scholar
  84. Papineau D. (2001) The rise of physicalism. In: Gillett C., Loewer B. (eds) Physicalism and its discontents. Cambridge University Press, Cambridge, pp 3–36CrossRefGoogle Scholar
  85. Papineau D. (2009) The causal closure of the physical and naturalism. In: McLaughlin B., Beckermann A., Walter S. (eds) The Oxford handbook of philosophy of mind. Oxford University Press, Oxford, pp 53–65CrossRefGoogle Scholar
  86. Pelkwijk J., Tinbergen N. (1937) Eine reizbiologische Analyse einiger Verhaltensweisen von Gasterosteus aculeatus L. Zeitschrift Für Tierpsychologie 1: 193–203CrossRefGoogle Scholar
  87. Press F., Siever R., Jordan T., Grotzinger J. (2003) Understanding Earth (4th ed.). W.H. Freeman Company, New YorkGoogle Scholar
  88. Prior E., Pargetter R., Jackson F. (1982) Three theses about dispositions. American Philosophical Quarterly 19: 251–259Google Scholar
  89. Rowe M., Baube C., Loew E., Phillips J. (2004) Optimal mechanisms for finding and selecting mates: How threespine stickleback (Gasterosteus aculeatus) should encode male throat colors. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 190: 241–256. doi:10.1007/s00359-004-0493-8 CrossRefGoogle Scholar
  90. Rowland W. (1984) The relationships among nuptial coloration, aggression, and courtship in male threespine sticklebacks. Canadian Journal of Zoology 62: 999–1004. doi:10.1139/z84-141 CrossRefGoogle Scholar
  91. Rowland W. (1994) The proximal basis of stickleback behavior: An evolutionary perspective. In: Bell M.A., Foster S.A. (eds) The evolutionary biology of the threespine stickleback. Oxford University Press, Oxford, pp 297–344Google Scholar
  92. Rowland W., Sevenster P. (1985) Sign stimuli in sticklebacks (Gasterosteus aculeatus): A re-examination and extension of some classic experiments. Behaviour 93: 241–257. doi:10.1163/156853986X00919 CrossRefGoogle Scholar
  93. Saidel E. (2001) Teleosemantics and the epiphenomenality of content. Canadian Journal of Philosophy Supplement 27: 139–166Google Scholar
  94. Schluter D., Marchinko K. B., Barrett R. D. H., Rogers S. M. (2010) Natural selection and the genetics of adaptation in threespine stickleback. Philosophical Transactions of the Royal Society B: Biological Sciences 65: 2479–2486. doi:10.1098/rstb.2010.0036 CrossRefGoogle Scholar
  95. Shapiro M., Bell M., Kingsley D. (2006) Parallel genetic origins of pelvic reduction in vertebrates. Proceedings of the National Academy of Sciences 103: 13753–13758. doi:10.1073/pnas.0604706103 CrossRefGoogle Scholar
  96. Shapiro M., Marks M., Peichel C., Blackman B., Nereng K., Jónsson B. et al (2004) Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428: 717–723. doi:10.1038/nature02415 CrossRefGoogle Scholar
  97. Shapiro M., Summers B., Balabhadra S., Aldenhoven J., Miller A., Cunningham C. et al (2009) The genetic architecture of skeletal convergence and sex determination in ninespine sticklebacks. Current Biology 19: 1140–1145. doi:10.1016/j.cub.2009.05.029 CrossRefGoogle Scholar
  98. Shinkareva, S. V., Mason, R. A., Malave, V. L., Wang, W., Mitchell, T. M., & Just, M. A. (2008). Using fMRI brain activation to identify cognitive states associated with perception of tools and dwellings. PLoS One, 3, e1394, 1–9. doi:10.1371/journal.pone.0001394.
  99. Shoemaker, S. (1980). Causality and properties. Reprinted in Shoemaker, S. (2003). Identity, cause, and mind: Philosophical essays, expanded edition (pp. 206–233). Oxford: Oxford University Press.Google Scholar
  100. Slutsky D. (2001) Causally inefficacious moral properties. Southern Journal of Philosophy 39: 595–610. doi:10.1111/j.2041-6962.2001.tb01835.x CrossRefGoogle Scholar
  101. Sober E. (1995) Natural selection and distributive explanation: A reply to Neander. British Journal for the Philosophy of Science 46: 384–397. doi:10.1093/bjps/46.3.384 CrossRefGoogle Scholar
  102. Srinivasan R., Thorpe S., Deng S., Lappas T., D’Zmura M. (2009) Decoding attentional orientation from EEG spectra. In: Jacko J. A. (eds) Human–computer interaction, new trends, part I, HCII 2009, LNCS 5610. Springer, Berlin, pp 176–183. doi:10.1007/978-3-642-02574-7_20 Google Scholar
  103. Tinbergen N. (1951) The study of instinct. Oxford University Press, OxfordGoogle Scholar
  104. Tinbergen N. (1952) The curious behavior of the stickleback. Scientific American 187: 22–26CrossRefGoogle Scholar
  105. Turner D. (2005) Local underdetermination in historical science. Philosophy of Science 72: 209–230. doi:10.1086/426851 CrossRefGoogle Scholar
  106. Walsh D. (1996) Fitness and function. British Journal for the Philosophy of Science 47: 553–574. doi:10.1093/bjps/47.4.553 CrossRefGoogle Scholar
  107. Walsh D. (1999) Alternative individualism. Philosophy of Science 66: 628–648. doi:10.1086/392758 CrossRefGoogle Scholar
  108. Walsh D., Ariew A. (1996) A taxonomy of functions. Canadian Journal of Philosophy 26: 493–514Google Scholar
  109. Waters C. K. (1998) Causal regularities in the biological world of contingent distributions. Biology and Philosophy 13: 5–36. doi:10.1023/A:1006572017907 CrossRefGoogle Scholar
  110. Wilz K. J. (1970) Causal and functional analysis of dorsal pricking and nest activity in the courtship of the three-spined stickleback Gasterosteus aculeatus. Animal Behavior 18: 115–124CrossRefGoogle Scholar
  111. Wooton R. J. (1976) The biology of the sticklebacks. Academic Press, New YorkGoogle Scholar
  112. Wooton R. J. (1984) A functional biology of sticklebacks. University of California Press, Berkeley, CAGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Eastern Connecticut State UniversityWillimanticUSA

Personalised recommendations