Synthese

, Volume 184, Issue 3, pp 235–246 | Cite as

Experiment and theory building

Article
  • 248 Downloads

Abstract

I examine the role of inference from experiment in theory building. What are the options open to the scientific community when faced with an experimental result that appears to be in conflict with accepted theory? I distinguish, in Laudan’s (1977), Nickels’s (1981), and Franklin’s (1993) sense, between the context of pursuit and the context of justification of a scientific theory. Making this distinction allows for a productive middle position between epistemic realism and constructivism. The decision to pursue a new or a revised theory in response to the new evidence may not be fully rationally determined. Nonetheless, it is possible to distinguish the question of whether there is reason to pursue a theory from the question of whether that theory, once it has been pursued over time, solves a problem of interest to science. I argue that, in this context, there is a solid way to distinguish between the contexts of pursuit and of justification, on the basis of a theory’s evidential support and problem-solving ability.

Keywords

Experiment Theory building Realism Constructivism Pursuit Justification Inference Helmholtz Fluid mechanics Hacking Franklin Nickles Problem solving 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Collins H. (1994) A strong confirmation of the experimenter’s regress. Studies in History and Philosophy of Modern Physics 25(3): 493–503Google Scholar
  2. Darrigol O. (2005) Worlds of flow: A history of hydrodynamics from the Bernoullis to Prandtl. Oxford University Press, OxfordGoogle Scholar
  3. Eötvös R., Pekar D., Fekete E. (1922) Beiträge zum Gesetze der Proportionalität von Trägheit und Gravität. Annalen der Physik 68: 11–66CrossRefGoogle Scholar
  4. Fischbach E., Sudarsky D., Szafer A., Talmadge C., Aronson S. (1986) Reanalysis of the Eötvös experiment. Physics Review Letters 56: 3–6CrossRefGoogle Scholar
  5. Franklin A. (1986) The neglect of experiment. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. Franklin A. (1993) The rise and fall of the fifth force: Discovery, pursuit, and justification in modern physics. American Institute of Physics, New YorkGoogle Scholar
  7. Franklin, A. (2009). Experiment in physics. The stanford encyclopedia of philosophy (Spring 2009 Edition), Zalta, E. N. (Ed.), URL = < http://plato.stanford.edu/archives/spr2009/entries/physics-experiment/>.
  8. Franklin-Hall L. (2005) Exploratory experiments. Philosophy of Science 72(5): 888–899CrossRefGoogle Scholar
  9. Fuhs, A. E., Shetz, J. A. (eds) (1999) Fundamentals of fluid mechanics. John Wiley, New YorkGoogle Scholar
  10. Galison P. (1987) How experiments end. Cambridge University Press, CambridgeGoogle Scholar
  11. Ghigo, F. (2009). Karl Jansky and the discovery of cosmic radio waves. National Radio Astronomy Observatory, http://www.nrao.edu/whatisra/hist_jansky.shtml.
  12. Hacking I. (1983) Representing and intervening: Introductory topics in the philosophy of natural science. Cambridge University Press, CambridgeGoogle Scholar
  13. Koenigsberger L. (1906) Hermann von Helmholtz, translated by Frances A. Welby with a preface by Lord Kelvin. Dover Publications, New YorkCrossRefGoogle Scholar
  14. Kuhn T. (1987) What are scientific revolutions ? In: Kruger L., Daston L., Heidelberger M. (eds) The probablistic revolution, Volume I: Ideas in history. MIT Press, Cambridge, MA, pp 7–22Google Scholar
  15. Laudan L. (1981) A confutation of convergent realism. Philosophy of Science 48(1): 19–49CrossRefGoogle Scholar
  16. Massachusetts Institute of Technology. (July 31, 2009). Breakdown In Planck’s Law: Bringing Objects Close Together Can Boost Radiation Heat Transfer. Science Daily: http://www.sciencedaily.com/releases/2009/07/090730154025.htm.
  17. Mayo D. (1996) Error and the growth of experimental knowledge. University of Chicago Press, ChicagoGoogle Scholar
  18. Nickles, T. (eds) (1980) Scientific discovery: Case studies. D. Reidel, DordrechtGoogle Scholar
  19. Nickles T. (1981) What is a problem that we may solve it ? Synthese 47: 85–118CrossRefGoogle Scholar
  20. Poincaré, H. (1890). Letter to Heinrich Hertz, 8 October 1890. ALS 4p. HS 02996, Archiv, Deutsches Museum.Google Scholar
  21. Smith P. (1998) Approximate truth and dynamical theories. The British Journal for the Philosophy of Science 49(2): 253–277CrossRefGoogle Scholar
  22. Spanos A. (2009) The discovery of argon: A case for learning from data ? Philosophy of Science 77: 359–380CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Virginia TechBlacksburgUSA

Personalised recommendations