, Volume 175, Supplement 1, pp 63–88 | Cite as

Information, possible worlds and the cooptation of scepticism

  • Luciano Floridi


The article investigates the sceptical challenge from an information-theoretic perspective. Its main goal is to articulate and defend the view that either informational scepticism is radical, but then it is epistemologically innocuous because redundant; or it is moderate, but then epistemologically beneficial because useful. In order to pursue this cooptation strategy, the article is divided into seven sections. Section 1 sets up the problem. Section 2 introduces Borel numbers as a convenient way to refer uniformly to (the data that individuate) different possible worlds. Section 3 adopts the Hamming distance between Borel numbers as a metric to calculate the distance between possible worlds. In Sects. 4 and 5, radical and moderate informational scepticism are analysed using Borel numbers and Hamming distances, and shown to be either harmless (extreme form) or actually fruitful (moderate form). Section 6 further clarifies the approach by replying to some potential objections. In the conclusion, the Peircean nature of the overall approach is briefly discussed.


Borel numbers Hamming distance Informational scepticism David Lewis Levenshtein distance Modal metrics Philosophy of information Possible worlds Scepticism Semantic information 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelard, P. (1976). In B. B. Boyer & R. McKeon (Eds.), Sic Et Non: A critical edition, Chicago, London: University of Chicago Press.Google Scholar
  2. Bar-Hillel Y. (1951) A note on state-descriptions. Philosophical Studies 2(5): 72–75CrossRefGoogle Scholar
  3. Bar-Hillel Y. (1964) Language and information: Selected essays on their theory and application. Addison-Wesley, Reading, MA/LondonGoogle Scholar
  4. Bar-Hillel, Y., & Carnap, R. (1953). An outline of a theory of semantic information. (Reprinted in Bar-Hillel 1964, pp. 221–274)Google Scholar
  5. Borel É. (1927) A Propos De La Recente Discussion Entre M. R. Wavre Et M. P. Levy. Revue de Métaphysique et de Morale 34: 271–276Google Scholar
  6. Carnap R. (1951) The problem of relations in inductive logic. Philosophical Studies 2(5): 75–80CrossRefGoogle Scholar
  7. Chaitin G. J. (2006) Meta maths: The quest for omega. Atlantic, LondonGoogle Scholar
  8. D’Agostino M., Floridi L. (2009) The enduring scandal of deduction. Is propositional logic really uninformative?. Synthese 167(2): 271–315CrossRefGoogle Scholar
  9. Dalal, M. (1988). Investigations into a theory of knowledge base revision: Preliminary report. In Proceedings of the seventh national conference on artificial intelligence (AAAI-88) (pp. 475–479). Minnesota: St. Paul.Google Scholar
  10. Descartes, R. (1984). The philosophical writings of Descartes. (Vol. 3) (J. Cottingham, R. Stoothoff, & D. Murdoch, Trans.). Cambridge: Cambridge University Press.Google Scholar
  11. Deza M. M., Deza E. (2009) Encyclopedia of distances. Springer, New YorkCrossRefGoogle Scholar
  12. Ernvall J., Katajainen J., Penttonen M. (1985) Np-completeness of the Hamming Salesman problem. BIT Numerical Mathematics 25(1): 289–292CrossRefGoogle Scholar
  13. Floridi L. (1998a) The importance of being Earnest: Peirce’s interpretation of scepticism. In: van Brakel J., van Heerden M. (eds) C. S. Peirce categories to Constantinople. Leuven University Press, Leuven, pp 47–60Google Scholar
  14. Floridi L. (1998b) Mathematical scepticism: A sketch with historian in foreground. In: van der Zande J., Popkin R. (eds) The Skeptical Tradition around 1800. Kluwer, Dordrecht, pp 41–60Google Scholar
  15. Floridi, L. (2000). Mathematical skepticism: The Cartesian approach. In A. Kanamori (Ed.), Proceedings of the twentieth world congress of philosophy (pp. 217–265). Bowling Green: Philosophy Doc Ctr.Google Scholar
  16. Floridi L. (2002) Sextus Empiricus, the recovery and transmission of pyrrhonism. Oxford University Press, Oxford, New YorkGoogle Scholar
  17. Floridi L. (2004a) Mathematical skepticism: The debate between Hobbes and Wallis. In: Neto J. R. M., Popkin R. H. (eds) Skepticism in renaissance and post-renaissance thought: New interpretations. Prometheus, New York, pp 143–183Google Scholar
  18. Floridi L. (2004b) Outline of a theory of strongly semantic information. Minds and Machines 14(2): 197–222CrossRefGoogle Scholar
  19. Floridi L. (2010) The philosophy of information. Oxford University Press, OxfordGoogle Scholar
  20. Gabbay D. M., Schlechta K. (2009) Logical tools for handling change in agent-based systems. Springer, New YorkGoogle Scholar
  21. Hintikka J. (1973) Logic, language-games and information: Kantian themes in the philosophy of logic. Clarendon Press, OxfordGoogle Scholar
  22. Holm R. (2003) A constructive approach to state description semantics. Journal of Applied Logic 1(1–2): 13–46CrossRefGoogle Scholar
  23. Konstantinidis S. (2007) Computing the edit distance of a regular language. Information and Computation 205(9): 1307–1316CrossRefGoogle Scholar
  24. Kracht M., Kutz O. (2007) Logically possible worlds and counterpart semantics for modal logic. In: Jacquette D. (eds) Philosophy of logic. Elsevier, Amsterdam, pp 943–996CrossRefGoogle Scholar
  25. Kutach, D. (Ed.). (2006). Special issue on “Similarity Is a Bad Guide to Counterfactual Truth”. Available online at
  26. Lafage C., Lang J. (2001) Propositional distances and preference representation. Lecture Notes in Computer Science 2143: 48–59CrossRefGoogle Scholar
  27. Larkin J. H., Simon H. A. (1987) Why a diagram is (Sometimes) worth ten thousand words. Cognitive Science 11(1): 65–100CrossRefGoogle Scholar
  28. Leibniz, G. W. (1951). In P. P. Wiener (Ed.), Selections. New York: Charles Scribner’s Sons.Google Scholar
  29. Lewis D. (1979) Counterfactual dependence and time’s arrow. Noûs 13(4): 455–476Google Scholar
  30. Lewis D. K. (1973) Counterfactuals. Basil Blackwell, OxfordGoogle Scholar
  31. Mancosu P. (1998) From Brouwer to Hilbert: The debate on the foundations of mathematics in the 1920s. Oxford University Press, New York, OxfordGoogle Scholar
  32. Manthey B., Reischuk R. (2005) The intractability of computing the Hamming distance. Theoretical Computer Science 337(1–3): 331–346CrossRefGoogle Scholar
  33. Marion M. (1998) Wittgenstein, Finitism, and the foundations of mathematics. Clarendon, OxfordGoogle Scholar
  34. Naimpally S. A., Warrack B. (1970) Proximity spaces. Cambridge University Press, CambridgeGoogle Scholar
  35. Niiniluoto, I. (1987). Truthlikeness. Dordrecht, Holland; Boston: Reidel.Google Scholar
  36. Papini O. (2000) Knowledge-base revision. The Knowledge Engineering Review 15(04): 339–370CrossRefGoogle Scholar
  37. Pascal, B. (1995). Penseés and other writings (H. Levi, Transl. with an introduction and notes by A. Levi.). Oxford: Oxford University Press.Google Scholar
  38. Peirce C. S. (1877) The fixation of belief. Popular Science Monthly 12: 1–15Google Scholar
  39. Popkin R. H. (2003) The history of scepticism: From Savonarola to Bayle revised and expanded edition. Oxford University Press, New York; OxfordGoogle Scholar
  40. Ramón y Cajal, S. (1999). Advice for a young investigator Reglas y consejos sobre investigación cientifica (4th ed. 1916) (N. Swanson & L. W. Swanson, Trans.). Cambridge MA, London: MIT Press.Google Scholar
  41. Satoh, K. (1988). Nonmonotonic reasoning by minimal belief revision. Proceedings of the international conference on fifth generation computer systems, Tokyo, Japan (pp. 455–462).Google Scholar
  42. Simon H. A. (1978) On the forms of mental representation. In: Savage C. W. (eds) Minnesota studies in the philosophy of science: Perception and cognition: Issues in the foundations of psychology (Vol. IX). University of Minnesota Press, Minneapolis, pp 3–18Google Scholar
  43. Tasić V. (2001) Mathematics and the roots of postmodern thought. Oxford University Press, OxfordGoogle Scholar
  44. Williamson T. (1987) Invertible definitions. Notre Dame Journal of Formal Logic 28(2): 244–258CrossRefGoogle Scholar
  45. Yue A., Liu W., Hunter A. (2008) Measuring the ignorance and degree of satisfaction for answering queries in imprecise probabilistic logic programs. Lecture Notes In Computer Science 5291: 386–400CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of HertfordshireHatfieldUK
  2. 2.Faculty of Philosophy and IEGUniversity of OxfordOxfordUK

Personalised recommendations