Synthese

, Volume 184, Issue 1, pp 13–27

Is the conjunction fallacy tied to probabilistic confirmation?

Article
  • 189 Downloads

Abstract

Crupi et al. (2008) offer a confirmation-theoretic, Bayesian account of the conjunction fallacy—an error in reasoning that occurs when subjects judge that Pr(h1 & h2|e) > Pr(h1|e). They introduce three formal conditions that are satisfied by classical conjunction fallacy cases, and they show that these same conditions imply that h1 & h2 is confirmed by e to a greater extent than is h1 alone. Consequently, they suggest that people are tracking this confirmation relation when they commit conjunction fallacies. I offer three experiments testing the merits of Crupi et al.’s account specifically and confirmation-theoretic accounts of the conjunction fallacy more generally. The results of Experiment 1 show that, although Crupi et al.’s conditions do seem to be causally linked to the conjunction fallacy, they are not necessary for it; there exist cases that do not meet their three conditions in which subjects still tend to commit the fallacy. The results of Experiments 2 and 3 show that Crupi et al.’s conditions, and those offered by other confirmation-theoretic accounts of the fallacy, are not sufficient for the fallacy either; there exist cases that meet all three of CFT’s conditions in which subjects do not tend to commit the fallacy. Additionally, these latter experiments show that such confirmation-theoretic conditions are at best only weakly causally relevant to the presence of the conjunction fallacy. Given these findings, CFT’s account specifically, and any general confirmation-theoretic account more broadly, falls short of offering a satisfying explanation of the presence of the conjunction fallacy.

Keywords

Conjunction fallacy Confirmation Bayesianism Probability Experimental philosophy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of History and Philosophy of ScienceUniversity of PittsburghPittsburghUSA

Personalised recommendations