Synthese

, Volume 183, Issue 1, pp 69–85 | Cite as

What is the axiomatic method?

Article

Abstract

The modern notion of the axiomatic method developed as a part of the conceptualization of mathematics starting in the nineteenth century. The basic idea of the method is the capture of a class of structures as the models of an axiomatic system. The mathematical study of such classes of structures is not exhausted by the derivation of theorems from the axioms but includes normally the metatheory of the axiom system. This conception of axiomatization satisfies the crucial requirement that the derivation of theorems from axioms does not produce new information in the usual sense of the term called depth information. It can produce new information in a different sense of information called surface information. It is argued in this paper that the derivation should be based on a model-theoretical relation of logical consequence rather than derivability by means of mechanical (recursive) rules. Likewise completeness must be understood by reference to a model-theoretical consequence relation. A correctly understood notion of axiomatization does not apply to purely logical theories. In the latter the only relevant kind of axiomatization amounts to recursive enumeration of logical truths. First-order “axiomatic” set theories are not genuine axiomatizations. The main reason is that their models are structures of particulars, not of sets. Axiomatization cannot usually be motivated epistemologically, but it is related to the idea of explanation.

Keywords

Axiomatic method Information Logical consequence Completeness Set theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott E. (1935) Flatland: A romance of many dimensions. Little, Brown & Company, BostonGoogle Scholar
  2. Aczel A. D. (2006) The artist and the mathematician: The story of Nicholas Bourbaki, the genius mathematician who never existed. Avalon, New YorkGoogle Scholar
  3. Bourbaki N. (1950) The architecture of mathematics. American Mathematical Monthly 57: 221–232CrossRefGoogle Scholar
  4. Ebbinghaus H.-D. (2007) Ernst Zermelo: An approach to his life and work. Springer, BerlinGoogle Scholar
  5. Frank Ph. (1947) Einstein: His life and times. A. A. Knopf, New YorkGoogle Scholar
  6. Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38, 173–198. (Reprinted & translation in Collected works (Vol. 1, pp. 144–195). Oxford: Oxford University Press).Google Scholar
  7. Gödel K. (1983) Russell’s mathematical logic. In: Benacerraf P., Putnam H. (eds) Philosophy of mathematics. Cambridge University Press, New York, pp 447–469Google Scholar
  8. Hilbert, D. (1899). Grundlagen der Geometrie. In Festschrift zur Feier der Enthüllung des Gauss-Weber-Denkmals in Göttinge (pp. 1–92). Leipzig: Teubner.Google Scholar
  9. Hilbert, D. (1900). Mathematische Probleme. In Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Math.-Phys. Klasse (pp. 253–297). Lecture given at the International Congress of Mathematicians, Paris.Google Scholar
  10. Hilbert, D. (1918). Axiomatisches Denken. Mathematische Annalen, 8, 405–415. English translation in W. Ewald (Ed.), From Kant to Hilbert: A source book in the foundations of mathematics (Vol. 2, pp. 1105–1110). Oxford: Oxford University Press.Google Scholar
  11. Hilbert D. (1922) Neubegrundung der Mathematik, Erste Mitteilung. Abandlungen aus dem Mathematischen Seminar Hamburger Universität 1: 157–171CrossRefGoogle Scholar
  12. Hintikka J. (1968) Behavioral criteria of radical translation. Synthese 19: 69–81CrossRefGoogle Scholar
  13. Hintikka J. (1996) The principles of mathematics revisited. Cambridge University Press, New YorkCrossRefGoogle Scholar
  14. Hintikka J. (2001) Post-Tarskian truth. Synthese 126: 17–36CrossRefGoogle Scholar
  15. Hintikka J. (2003) A distinction too few or too many? In: Gould C. (eds) Constructivism and practice. Roman and Littlefield, Lanham, MA, pp 47–74Google Scholar
  16. Hintikka J. (2004a) Independence-friendly logic and axiomatic set theory. Annals of Pure and Applied Logic 126: 313–333CrossRefGoogle Scholar
  17. Hintikka, J. (2004b). On the development of Aristotle’s ideas of scientific method and structure of science. In Analyses of Aristotle (pp. 153–174). Dordrecht: Kluwer.Google Scholar
  18. Hintikka J. et al (2006) Truth, negation, and some other basic notions in logic. In: Benthem J. (eds) The age of alternative logics. Springer, Heidelberg, pp 195–219CrossRefGoogle Scholar
  19. Hintikka J. (2007a) Who has kidnapped the notion of information? In: Hintikka J. (eds) Socratic epistemology, explorations of knowledge-seeking by questioning. Cambridge University Press, New York, pp 189–210Google Scholar
  20. Hintikka J. (2007) Logical explanations. In: Hintikka J. (eds) Socratic epistemology, explorations of knowledge-seeking by questioning. Cambridge University Press, New York, pp 161–188Google Scholar
  21. Hintikka, J. (forthcoming). Reforming logic (and set theory).Google Scholar
  22. Hintikka J., Karakadilar B. (2006) How to prove the consistency of arithmetic. Acta Philosophica Fennica 78: 1–15Google Scholar
  23. Laugwitz D. (1996) Bernhard Riemann 1826–1866: Wendepunkte in der Auffassung der Mathematik. Birkhäuser, BaselGoogle Scholar
  24. Majer U. (1995) Geometry, intuition and experience: From Kant to Hilbert. Erkenntnis 42: 261–295CrossRefGoogle Scholar
  25. Majer U. (2001) The axiomatic method and the foundations of science: Historical roots of mathematical physics in Göttingen (1900–1930). In: Rédei M., Stöltzner M. (eds) John von Neumann and the foundations of quantum physics. Kluwer, Dordrecht, pp 11–34Google Scholar
  26. Newton, I. (1972/1736). In A. Koyré & I. B. Cohen (Eds.), Isaac Newton’s Philosophiae Naturalis Principia Mathematica (Vol. 1). Cambridge: Harvard University Press.Google Scholar
  27. Pour-El M. B., Richards J. (1989) Computability in analysis and physics. Springer, HeidelbergGoogle Scholar
  28. Reichenbach H. (1958) The philosophy of space and time. Dover, New YorkGoogle Scholar
  29. Sandu G. (1998) IF logic and truth definition. Journal of Philosophical Logic 27: 143–164CrossRefGoogle Scholar
  30. Tarski, A. (1935). Der Wahrheïtsbegriff in den formalisierten Sprachen. Studia Philosophica, 1, 261–405. English translation in Tarski (1956). Logic, semantics, metamathematics. New York: Oxford University Press.Google Scholar
  31. Trisch M. (2005) Inconsistency, asymmetry, and non-locality. Oxford University Press, New YorkGoogle Scholar
  32. Zermelo, E. (1904). Proof that every set can be well-ordered. Original German in Mathematische Annalen, 59, 514–516. English translation in J. van Heijenoort (Ed.). (1967). From Frege to Gödel: A sourcebook in mathematical logic 1879–1931 (pp. 139–141). Cambridge, MA: Harvard University Press.Google Scholar
  33. Zermelo, E. (1908). Investigations on the foundations of set theory. Original German in Mathematische Annalen, 65, 261–281. English translation in J. van Heijenoort (Ed.). (1967). From Frege to Gödel: A sourcebook in mathematical logic (pp. 1879–1931). Cambridge, MA: Harvard University Press.Google Scholar
  34. Zermelo, E. (1930). New investigations on the foundations of set theory. Original German in Fundamenta Mathematicae, 16, 29–47. English translation in W. Ewald (Ed.). (1996). From Kant to Hilbert (Vol. 2, pp. 1208–1233). Oxford: Oxford University Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of PhilosophyBoston UniversityBostonUSA

Personalised recommendations