Advertisement

Synthese

, Volume 183, Issue 1, pp 7–26 | Cite as

Kant’s conception of proper science

  • Hein van den Berg
Open Access
Article

Abstract

Kant is well known for his restrictive conception of proper science. In the present paper I will try to explain why Kant adopted this conception. I will identify three core conditions which Kant thinks a proper science must satisfy: systematicity, objective grounding, and apodictic certainty. These conditions conform to conditions codified in the Classical Model of Science. Kant’s infamous claim that any proper natural science must be mathematical should be understood on the basis of these conditions. In order to substantiate this reading, I will show that only in this way it can be explained why Kant thought (1) that mathematics has a particular foundational function with respect to the natural sciences and (2) as such secures their scientific status.

Keywords

Kant Proper science Objective grounding Mathematics 

Notes

Acknowledgements

I wish to express my appreciation for the insightful comments of two anonymous reviewers. Any remaining shortcomings are of course my own. Research for this paper was conducted within the project The Quest for the System in the Transcendental Philosophy of Immanuel Kant, subsidized by the Netherlands Organization of Scientific Research (NWO).

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. Chignell A. (2007) Kant’s concepts of justification. Noûs 41: 33–63CrossRefGoogle Scholar
  2. de Jong W. R. (1995) Kant’s analytic judgments and the traditional theory of concepts. Journal of the History of Philosophy 33: 613–641Google Scholar
  3. de Jong, W. R., & Betti, A. (2008). The classical model of science: A millenia-old model of scientific rationality. Synthese. doi: 10.1007/s11229-008-9417-4.
  4. Falkenburg B. (2000) Kants Kosmologie. Vittorio Klostermann, Frankfurt am MainGoogle Scholar
  5. Friedman M. (1992a) Kant and the exact sciences. Harvard University Press, CambridgeGoogle Scholar
  6. Friedman M. (1992b) Causal laws and the foundations of natural science. In: Guyer P. (eds) The Cambridge companion to Kant. Cambridge University Press, Cambridge, pp 161–199CrossRefGoogle Scholar
  7. Fulda H. F. & Stolzenberg J. (Eds.). (2001). Architektonik und System in der Philosophie Kants. Hamburg: Felix Meiner Verlag.Google Scholar
  8. Guyer P. (2005) Kant’s system of nature and freedom. Oxford University Press, OxfordCrossRefGoogle Scholar
  9. Harper W. (2002) Newton’s argument for universal gravitation. In: Cohen I. B., Smith G. E. (eds) The Cambridge companion to Newton. Cambridge University Press, Cambridge, pp 174–201CrossRefGoogle Scholar
  10. Kant, I. (1787). Kritik der reinen Vernunft (1998). Hamburg: Felix Meiner. References are in the customary way via the pagination of the first (A) or second printing (B).Google Scholar
  11. Kant, I. (1902). Kants gesammelte Schriften. Vol. I—XXIX (1902–1983). Berlin: De Gruyter, Reimer. Quotations from P. Guyer & A. W. Wood (Eds.), (1992–). The Cambridge edition of the works of Immanuel Kant. Cambridge: Cambridge University Press.Google Scholar
  12. Longuenesse B. (1998) Kant and the capacity to judge. Princeton University Press, PrincetonGoogle Scholar
  13. Longuenesse B. (2001) Kant’s deconstruction of the principle of sufficient reason. The Harvard Review of Philosophy IX: 67–87Google Scholar
  14. Nayak A. C., Sotnak E. (1995) Kant on the impossibility of the “soft sciences”. Philosophy and Phenomenological Research 55: 133–151CrossRefGoogle Scholar
  15. Newton, I. (1999). The principia: Mathematical principles of natural philosophy (I. B. Cohen & A. Whitmann, Trans.). Berkeley: University of California Press.Google Scholar
  16. Okruhlik K. (1986) Kant on realism and methodology. In: Butts R. E. (eds) Kant’s philosophy of the physical sciences. Reidel, Dordrecht, pp 307–329CrossRefGoogle Scholar
  17. Parsons C. (1992) Kant’s philosophy of arithmetic. In: Posy C. J. (eds) Kant’s philosophy of mathematics. Kluwer, Dordrecht, pp 43–79Google Scholar
  18. Pollok K. (2001) Kants “Metaphysische Anfangsgründe der Naturwissenschaft” Ein Kritischer Kommentar. Hamburg, Felix Meiner VerlagGoogle Scholar
  19. Shabel L. (2003) Mathematics in Kant’s critical philosophy: Reflections on mathematical practice. Routledge, New YorkGoogle Scholar
  20. Sloan P. R. (2006) Kant on the history of nature: The ambiguous heritage of the critical philosophy for natural history. Studies in History and Philosophy of Biological and Biomedical Sciences 37: 627–648CrossRefGoogle Scholar
  21. Thompson M. (1992) Singular terms and intuitions in Kant’s epistemology. In: Posy C. J. (eds) Kant’s philosophy of mathematics. Kluwer, Dordrecht, pp 81–107Google Scholar
  22. Watkins E. (eds). (2001). Kant and the sciences. Oxford: Oxford University Press.Google Scholar
  23. Watkins, E. (2007). Kant’s philosophy of science. The Stanford Encyclopedia of Philosophy (Fall 2007 edn.) E. N. Zalta (Ed.). URL:http://plato.stanford.edu/archives/fall2007/entries/kant-science/.
  24. Wolff C. (1965) Mathematisches Lexicon. Georg Olms Verlag, Hildesheim, NYGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.Faculteit der WijsbegeerteVrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations