Synthese

, Volume 182, Issue 1, pp 149–163 | Cite as

What are the phenomena of physics?

Article

Abstract

Depending on different positions in the debate on scientific realism, there are various accounts of the phenomena of physics. For scientific realists like Bogen and Woodward, phenomena are matters of fact in nature, i.e., the effects explained and predicted by physical theories. For empiricists like van Fraassen, the phenomena of physics are the appearances observed or perceived by sensory experience. Constructivists, however, regard the phenomena of physics as artificial structures generated by experimental and mathematical methods. My paper investigates the historical background of these different meanings of “phenomenon” in the traditions of physics and philosophy. In particular, I discuss Newton’s account of the phenomena and Bohr’s view of quantum phenomena, their relation to the philosophical discussion, and to data and evidence in current particle physics and quantum optics.

Keywords

Analytic-synthetic method Bohr Newton Phenomena Physics Scientific realism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailer-Jones, D. M. (2009). Scientific models in philosophy of science. University of Pittsburgh Press (to appear).Google Scholar
  2. Bogen J., Woodward J. (1988) Saving the phenomena. The Philosophical Review 97: 303–352CrossRefGoogle Scholar
  3. Bohr, N. (1922). On atomerne bygning. Nobel lecture, December 11, 1922. German translation by Pauli, W. (1923). Über den Bau der Atome. Naturwissenschaften, 11, 606–624. English translation by Hoyt, F. C. (1923). The structure of the atom. Nature, 112, 29–44. Danish and English text in BCW (Bohr’s Collected Works), Vol. 4, pp. 425–482.Google Scholar
  4. Bohr, N. (1927). The quantum postulate and the recent development of atomic theory. Como lecture. Modified version: Bohr, 1928. Both versions in BCW, Vol. 6, pp. 109–158.Google Scholar
  5. Bohr, N. (1928). The quantum postulate and the recent development of atomic theory. Nature, 121, 580–590 (modified version). Reprinted in Wheeler, J. A., & Zurek, W. H. (Eds.). (1983). Quantum theory and measurement (pp. 87–126). Princeton: Princeton University Press. (Quoted after Wheeler and Zurek 1983).Google Scholar
  6. Bohr, N. (1933). Light and life. Nature, 131, 421–423, 457–459. Reprinted in Bohr, N. (1958). Atomic physics and human knowledge. New York: Wiley. Also in BCW, Vol. 10.Google Scholar
  7. Bohr, N. (1949). Discussion with Einstein on epistemological problems of atomic physics. In P. A. Schilpp (Ed.), Albert Einstein: Philosopher—scientist (pp. 115–150). Illinois, Evanston: Library of Living Philosophers. Reprinted in Wheeler, J. A., & Zurek, W. H. (Eds.). (1983). Quantum theory and measurement (pp. 9–49). Princeton: Princeton University Press. (Quoted after Wheeler and Zurek 1983).Google Scholar
  8. Bohr N. (1958) Atomic physics and human knowledge. Wiley, New YorkGoogle Scholar
  9. Bohr, N. (1961). Physique atomique et connaissance humaine (C. Chevalley, Ed.). Paris: Gallimard.Google Scholar
  10. Cartwright N. (1983) How the laws of physics lie. Clarendon Press, OxfordCrossRefGoogle Scholar
  11. Cartwright N. (1999) The dappled world: A study of the boundaries of science. Cambridge University Press, CambridgeGoogle Scholar
  12. Chevalley, C. (1991). Glossaire, in Bohr 1961, pp. 345–567.Google Scholar
  13. Cohen H. (1883) Das Prinzip der Infinitesimalmethode und seine Geschichte Ein Kapitel zur Grundlegung der Erkenntniskritik. Duemmler, BerlinGoogle Scholar
  14. Cohen, H. (1896). Einleitung mit kritischem Nachtrag zur 9.\ Auflage der Geschichte des Materialismus von Friedrich Albert Lange. Reprinted in Werke, Vol. 5.2. Hildesheim: Olms (1977 ff.).Google Scholar
  15. Compton, A. H. (1927). Compton scattering. Picture taken from: Grimsehls Lehrbuch der Physik. Neu bearbeitet von R.Tomaschek. Zweiter Band, Zweiter Teil: Materie und Äther (8th ed., pp. 138, 211). Leipzig und Berlin: Teubner.Google Scholar
  16. Engfer, H. J. (1982). Philosophie als Analysis. Studien zur Entwicklung philosophischer Analysis-Konzeptionen unter dem Einfluß mathematischer Methodenideale im 17. und frühen 18. Jahrhundert. Stuttgart-Bad Cannstatt: Fromann-Holzboog.Google Scholar
  17. Falkenburg, B. (2000). Kants Kosmologie. Die wissenschaftliche Revolution der Kosmologie im 18. Jahrhundert. Frankfurt/M.: Klostermann.Google Scholar
  18. Falkenburg B. (2007) Particle metaphysics: A critical account of subatomic reality. Springer, BerlinGoogle Scholar
  19. Falkenburg, B., & Ihmig, K.-N. (2004). Report DFG Fa 261/5-1, Hypotheses non fingo: Newtons Methodenlehre. Dortmund (unpublished).Google Scholar
  20. Faye J. (1991) Niels Bohr: His heritage and legacy. Kluwer, DordrechtCrossRefGoogle Scholar
  21. Hacking I. (1983) Representing and intervening. Cambridge University Press, CambridgeGoogle Scholar
  22. Ihmig K.-N. (2004a) Die Bedeutung der Methoden der Analyse und Synthese für Newtons Programm der Mathematisierung der Natur. In: Meixner U., Newen A. (eds) Logical analysis and history of philosophy 7, focus: History of the philosophy of nature. Paderborn, Mentis, pp 91–119Google Scholar
  23. Ihmig K.-N. (2004b) Newtons’s program of mathematizing nature. In: Hoffmann M., Lenhard J., Seeger F. (eds) Activity and sign—grounding mathematics education. Festschrift für Michael Otte. Kluwer, DordrechtGoogle Scholar
  24. Knorr-Cetina K. D. (1999) Epistemic cultures: How the sciences make knowledge. Harvard University Press, Cambridge, Mass.Google Scholar
  25. Lambert, J. H. (1764). Neues Organon oder Gedanken über die Erforschung des Wahren und dessen Unterscheidung von Irrtum und Schein. Leipzig: Johann Wendler; Nachdruck: Berlin, Akademie-Verlag (1990).Google Scholar
  26. Latour, B., & Woolgar, St. (1979). Laboratory life. The construction of scientific facts. Beverly Hills, London: Sage Publications, (2nd ed.): Princeton University Press.Google Scholar
  27. Losee J. (1993) A historical introduction to the philosophy of science. Oxford University Press, OxfordGoogle Scholar
  28. Mach, E. (1905). Erkenntnis und Irrtum. Skizzen zur Psychologie der Forschung. Reprint of 5th ed: Leipzig (1926); Darmstadt: Wissenschaftliche Buchgesellschaft (1991).Google Scholar
  29. Meyer-Abich K. M. (1965) Korrespondenz, Individualität und Komplementarität. Steiner, WiesbadenGoogle Scholar
  30. Mill, J. St. (1843). A system of logic. Abridged version based on the 8th ed. (New York 1881). Reprint: John Stuart Mill’s philosophy of scientific method (E. Nagel, Ed.). New York: Hafner Publishing Co. (1950).Google Scholar
  31. Morgan M., Morrison M. (eds). (1999). Models as mediators: Perspectives on natural and social sciences. Cambridge: Cambridge University Press.Google Scholar
  32. Natorp P. (1910) Die logischen Grundlagen der exakten Wissenschaften. Teubner, Leipzig und BerlinGoogle Scholar
  33. Newton, I. (1729). Principia. Sir Isaac Newton’s mathematical principles of natural philosophy and his system of the world. Vol. I: The motion of bodies. Vol. II: The system of the world. Mott’s translation revised by Cajori. Berkeley: Univiversity of California Press (1934, 1962).Google Scholar
  34. Newton, I. (1730). Opticks or treatise of the reflections, refractions, inflections & colours of light. Based on the fourth edition: London (1730); New York: Dover (1952, 1979).Google Scholar
  35. Newton, I. (1999). The principia. Mathematical principles of natural philosophy (I. Bernhard Cohen & Anne Whitman, Trans.). Berkeley: University of California Press.Google Scholar
  36. Pickering A. (1984) Constructing quarks. Edinburgh University Press, EdinburghGoogle Scholar
  37. Powell C. F., Fowler P. H., Perkins D. H. (1959) The study of elementary particles by the photographic method: An account of the principal techniques and discoveries illustrated by an atlas of photomicrographs. Pergamon Press, LondonGoogle Scholar
  38. Pringe H. (2007) Critique of the quantum power of judgment. Walter de Gruyter, BerlinGoogle Scholar
  39. Raether, H. (1957). Elektronenfrequenzen. Handbuch der Physik, Bd. 32, 443.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Fakultaet 14, Institut fuer Philosophie und PolitikwissenschaftTechnische Universitaet DortmundDortmundGermany

Personalised recommendations