Synthese

, Volume 182, Issue 1, pp 101–116 | Cite as

From data to phenomena: a Kantian stance

Article

Abstract

This paper investigates some metaphysical and epistemological assumptions behind Bogen and Woodward’s data-to-phenomena inferences. I raise a series of points and suggest an alternative possible Kantian stance about data-to-phenomena inferences. I clarify the nature of the suggested Kantian stance by contrasting it with McAllister’s view about phenomena as patterns in data sets.

Keywords

Data Phenomena Bogen Woodward McAllister Kant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achinstein P. (2001) Who really discovered the electron? In: Buchwald J. Z., Warwick A (eds) Histories of the electron. MIT Press., Cambridge, MA, pp 403–424Google Scholar
  2. Arabatzis T. (2006) Representing electrons: A biographical approach to theoretical entities. University of Chicago Press, ChicagoGoogle Scholar
  3. Bogen J., Woodward J. (1988) Saving the phenomena. Philosophical Review 97: 303–352CrossRefGoogle Scholar
  4. Chang, H. (2008, August). The persistence of epistemic objects through scientific change. Paper presented at the conference What (good) is historical epistemology? MPIWG, Berlin 24–26 July.Google Scholar
  5. Collins H. (1981) Son of seven sexes: The social destruction of a physical phenomenon. Social Studies of Science 11: 33–62CrossRefGoogle Scholar
  6. Collins H. (1985/1992) Changing order (2nd ed). University of Chicago Press, ChicagoGoogle Scholar
  7. Dretske F. (1981) Knowledge and the flow of information. MIT Press, Cambridge, MAGoogle Scholar
  8. Frankel H. R. (1978) The importance of Galileo’s non-telescopic observations concerning the size of the fixed stars. Isis 69: 77–82CrossRefGoogle Scholar
  9. Franklin A. (1986) The neglect of experiment. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  10. Franklin A. (1997) Calibration. Perspectives on Science 5: 31–80Google Scholar
  11. Galison P. (1985) Bubble chambers and the experimental work place. In: Achinstein P., Hannoway O (eds) Observation, experiment, and hypothesis in modern physical science. MIT Press, CambridgeGoogle Scholar
  12. Goldman A. (1986) Epistemology and cognition. Harvard University Press, Cambridge, MAGoogle Scholar
  13. Goldman, A. (2008, 21 April). Reliabilism. Stanford Encylopedia of Philosophy. Retrieved August 15, 2008, from http://plato.stanford.edu/entries/reliabilism/.
  14. Hacking I. (1983) Representing and intervening. Cambridge University Press, CambridgeGoogle Scholar
  15. Kant, I. (1781/1787). Kritik der reinen Vernunft. Riga: Johann Hartknoch. English translation: Guyer, P., Wood, A. W. 1997. Critique of Pure Reason. Cambridge: Cambridge University Press.Google Scholar
  16. Massimi M. (2004) Non-defensible middle ground for experimental realism: Why we are justified to believe in colored quarks. Philosophy of Science 71: 36–60CrossRefGoogle Scholar
  17. Massimi M. (2007) Saving Unobservable Phenomena. British Journal for the Philosophy of Science 58: 235–262CrossRefGoogle Scholar
  18. Massimi M. (2008) Why there are no ready-made phenomena: What philosophers of science should learn from Kant. In: Massimi M (eds) Kant and Philosophy of Science Today, Royal Institute of Philosophy, Supplement 63. Cambridge University Press, Cambridge, pp 1–35Google Scholar
  19. Massimi, M. (forthcoming). Galileo’s mathematization of nature at the cross-road between the empiricist tradition and the Kantian one. Perspectives on science.Google Scholar
  20. Mayo D. (1996) Error and the growth of experimental knowledge. University of Chicago Press, ChicagoGoogle Scholar
  21. McAllister J. (1997) Phenomena and patterns in data sets. Erkenntnis 47: 217–228CrossRefGoogle Scholar
  22. McAllister J. (2004) Thought experiments and the belief in phenomena. Philosophy of Science 71: 1164–1175CrossRefGoogle Scholar
  23. McAllister J. (2007) Model selection and the multiplicity of patterns in empirical data. Philosophy of Science 74: 884–894CrossRefGoogle Scholar
  24. Pickering A. (1984) Constructing quarks. University of Chicago Press, ChicagoGoogle Scholar
  25. Suppes P. (1962) Models of data. In: Nagel E., Suppes P., Tarski A (eds) Logic, methodology and philosophy of science. Stanford University Press, StanfordGoogle Scholar
  26. van Fraassen B. (2002) The empirical stance. Yale University Press, New HavenGoogle Scholar
  27. Vogel J. (2000) Reliabilism levelled. Journal of Philosophy 97: 602–623CrossRefGoogle Scholar
  28. Woodward J. (1989) Data and phenomena. Synthese 79: 393–472CrossRefGoogle Scholar
  29. Woodward J. (1998) Data, phenomena, and reliability. Philosophy of Science 67: S163–S179CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Science and Technology StudiesUniversity College LondonLondonUK

Personalised recommendations