Synthese

, Volume 180, Issue 2, pp 235–247 | Cite as

Is structural underdetermination possible?

Article

Abstract

Structural realism is sometimes said to undermine the theory underdetermination (TUD) argument against realism, since, in usual TUD scenarios, the supposed underdetermination concerns the object-like theoretical content but not the structural content. The paper explores the possibility of structural TUD by considering some special cases from modern physics, but also questions the validity of the TUD argument itself. The upshot is that cases of structural TUD cannot be excluded, but that TUD is perhaps not such a terribly serious anti-realistic argument.

Keywords

Theory underdetermination Structural realism Missing physics examples Mathematical overdetermination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Earman J. (1993) Underdetermination, realism, and reason. Midwest Studies in Philosophy 18: 19–38CrossRefGoogle Scholar
  2. Esfeld M. (2004) Quantum entanglement and a metaphysics of relations. Studies in History and Philosophy of Modern Physics 35(4): 601–617CrossRefGoogle Scholar
  3. French S. (2006) Structure as a weapon of the realist. Proceedings of the Aristotelian Society 106: 167–185CrossRefGoogle Scholar
  4. Glymour, C. (1977). Indistinguishable Space-Times and the Fundamental Group. In J. Earman, C. Glymour, & J. Stachel (Eds.), Foundations of space-time theories (Vol. 8), Minnesota studies in the philosophy of science. Minneapolis: University of Minnesota Press.Google Scholar
  5. Hayashi K., Shirafuji T. (1979) New general relativity. Physical Review D 19(12): 3524–3553CrossRefGoogle Scholar
  6. Hoefer C., Rosenberg A. (1994) Empirical equivalence, underdetermination, and systems of the world. Philosophy of Science 61: 592–607CrossRefGoogle Scholar
  7. Laudan L., Leplin J. (1991) Empirical equivalence and underdetermination. Journal of Philosophy 88: 449–472CrossRefGoogle Scholar
  8. Ladyman, J., & Ross, D. (with D. Spurrett and J. Collier) (2007). Every thing must go: Metaphysics naturalised. Oxford: Oxford University Press.Google Scholar
  9. Lyre H., Eynck T. O. (2003) Curve it, gauge it, or leave it? underdetermination in gravitational theories. Journal for General Philosophy of Science 34(2): 277–303CrossRefGoogle Scholar
  10. Lyre H. (2004a) Lokale Symmetrien und Wirklichkeit. Mentis, PaderbornGoogle Scholar
  11. Lyre H. (2004b) Holism and structuralism in U(1) gauge theory. Studies in History and Philosophy of Modern Physics 35(4): 643–670CrossRefGoogle Scholar
  12. Lyre, H. (2009). Structural realism and abductive-transcendental arguments. InM. Bitbol, P. Kerszberg, & J. Petitot, Constituting objectivity. Transcendental perspectives on modern physics. Berlin: Springer.Google Scholar
  13. Malament, D. (1977). Observationally indistinguishable space-times. In J. Earman, C. Glymour, & J. Stachel (Eds.), Foundations of space-time theories (Vol. 8), Minnesota studies in the philosophy of science. Minneapolis: University of Minnesota Press.Google Scholar
  14. Nester J.M. (1988) Is there really a problem with the teleparallel theory?. Classical and Quantum Gravity 5: 1003–1010CrossRefGoogle Scholar
  15. Quine W. V. (1975) On empirically equivalent systems of the world. Erkenntnis 9: 313–328CrossRefGoogle Scholar
  16. Quine W. V. (1990) Three indeterminacies. In: Barrett R. B., Gibson R. F. (eds) Perspectives on quine. Blackwell, Oxford, p.13Google Scholar
  17. Redhead M. (2002) The interpretation of gauge symmetry. In: Kuhlmann M., Lyre H., Wayne A. (eds) Ontological aspects of quantum field theory. World Scientific, Singapore, pp 281–301CrossRefGoogle Scholar
  18. Scheibe, E. (1994). On the mathematical overdetermination of physics. In E. Rudolph, I.-O. Stamatescu (Eds.), Philosophy, mathematics and modern physics (pp. 186–199). Berlin: Springer. (Reprinted from Between rationalism and empiricism: Selected papers in the philosophy of physics, No. VIII.38 by E. Scheibe, Ed., 2001, Berlin: Springer.Google Scholar
  19. Shapiro S. (2000) Thinking about Mathematics. Oxford University Press, OxfordGoogle Scholar
  20. van Fraassen B. C. (1980) The scientific image. Clarendon Press, Oxford, p. 46CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Philosophy DepartmentBielefeld UniversityBielefeldGermany

Personalised recommendations