Synthese

, Volume 181, Issue 1, pp 63–77 | Cite as

Reichenbach and Weyl on apriority and mathematical applicability

Article

Abstract

I examine Reichenbach’s theory of relative a priori and Michael Friedman’s interpretation of it. I argue that Reichenbach’s view remains at bottom conventionalist and that one issue which separates Reichenbach’s account from Kant’s apriorism is the problem of mathematical applicability. I then discuss Hermann Weyl’s theory of blank forms which in many ways runs parallel to the theory of relative a priori. I argue that it is capable of dealing with the problem of applicability, but with a cost.

Keywords

Relative a priori Convention Reichenbach Weyl Friedman 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berkovski S. (2002) Surprising user-friendliness. Logique et Analyse 45: 283–297Google Scholar
  2. Coffa J.A. (1991) The semantic tradition from Kant to Carnap. Cambridge University Press, Cambridge, MAGoogle Scholar
  3. Friedman M.L. (1983) Foundations of space-time theories. Princeton University Press, Princeton, NJGoogle Scholar
  4. Friedman M.L. (1999) Reconsidering logical positivism. Cambridge University Press, Cambridge, MAGoogle Scholar
  5. Friedman M.L. (2001) Dynamics of reason. CSLI Publications, Stanford, CAGoogle Scholar
  6. Hanna R. (2001) Kant and the foundations of analytic philosophy. Clarendon Press, OxfordGoogle Scholar
  7. Kant I. (1953) Prolegomena to any future metaphysics. Manchester University Press, ManchesterGoogle Scholar
  8. Kant, I. (1996). Metaphysical foundations of natural science. In Theoretical philosophy after 1781. Cambridge, MA: Cambridge University Press.Google Scholar
  9. Kripke S.A. (1971) Identity and necessity. In: Schwartz S.P. (eds) Naming, necessity, and natural kinds. Cornell University Press, Ithaca NYGoogle Scholar
  10. Kripke S.A. (1980) Naming and necessity. Basil Blackwell, OxfordGoogle Scholar
  11. Poincaré J.H. (1952) Science and hypothesis. Dover, New York, NY (French edition published in 1905)Google Scholar
  12. Reichenbach H. (1958) The philosophy of space and time. Dover, New York, NY (German edition published in 1928)Google Scholar
  13. Reichenbach H. (1965) The theory of relativity and a priori knowledge. University of California Press, Berkeley, CA (German edition published in 1920)Google Scholar
  14. Sivoukhin D.V. (1979) General physics (Vol. 1). Nauka, Moscow (in Russian)Google Scholar
  15. Steiner M. (1998) The applicability of mathematics as a philosophical problem. Harvard University Press, Cambridge, MAGoogle Scholar
  16. van Fraassen B. C. (2006) Structure: Its shadow and substance. British Journal for the Philosophy of Science 57: 275–307CrossRefGoogle Scholar
  17. Weyl H. (1949) Space-time-matter (4th ed.). Dover , New York, NY (German first edition published in 1918)Google Scholar
  18. Weyl H. (1949) Philosophy of mathematics and natural science. Princeton University Press, Princeton, NJGoogle Scholar
  19. Weyl H. (1952) Symmetry. Princeton University Press, Princeton, NJGoogle Scholar
  20. Weyl H. (1954) Über den Symbolismus der Mathematik und mathematischen Physik. Studium Generale 6: 219–228Google Scholar
  21. Weyl H. (1955) Erkenntnis und Besinnung. Studia Philosophica 15: 153–171Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of PhilosophyBilkent UniversityAnkaraTurkey

Personalised recommendations