, Volume 175, Issue 3, pp 427–440 | Cite as

“The Ravens Paradox” is a misnomer

  • Roger ClarkeEmail author


I argue that the standard Bayesian solution to the ravens paradox— generally accepted as the most successful solution to the paradox—is insufficiently general. I give an instance of the paradox which is not solved by the standard Bayesian solution. I defend a new, more general solution, which is compatible with the Bayesian account of confirmation. As a solution to the paradox, I argue that the ravens hypothesis ought not to be held equivalent to its contrapositive; more interestingly, I argue that how we formally represent hypotheses ought to vary with the context of inquiry. This explains why the paradox is compelling, while dealing with standard objections to holding hypotheses inequivalent to their contrapositives.


Confirmation Ravens paradox Hempel’s paradox Bayesian epistemology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chihara, C. (1981). Quine and the confirmational paradoxes. In P. A. French, T. E. Uehling Jr., & H. K. Wettstein (Eds.), The foundations of analytic philosophy (Midwest studies in philosophy) (Vol. 6, pp. 425–452). Minneapolis, MN: University of Minnesota Press.Google Scholar
  2. Cohen Y. (1987) Ravens and relevance. Erkenntnis 26: 153–179. doi: 10.1007/BF00192194 CrossRefGoogle Scholar
  3. Fitelson, B. (1999). The plurality of Bayesian measures of confirmation and the problem of measure sensitivity. Philosophy of Science, 66(Proceedings), S362–S378.Google Scholar
  4. Fitelson, B., & Hawthorne, J. (forthcoming). How Bayesian confirmation theory handles the paradox of the ravens. In E. Eells & J. Fetzer (Eds.), Probability in science. Chicago, IL: Open Court. Page references are to pdf file from
  5. Good I.J. (1967) The white shoe is a red herring. The British Journal for the Philosophy of Science 17: 322. doi: 10.1093/bjps/17.4.322 CrossRefGoogle Scholar
  6. Good I.J. (1968) The white shoe qua herring is pink. The British Journal for the Philosophy of Science 19: 156–157. doi: 10.1093/bjps/19.2.156 CrossRefGoogle Scholar
  7. Hempel, C.G. (1945). Studies in the logic of confirmation. Mind, 54, 1–26, 97–121 doi: 10.1093/mind/LIV.213.1
  8. Hempel C.G. (1967) The white shoe: No red herring. The British Journal for the Philosophy of Science 18: 239–240. doi: 10.1093/bjps/18.3.239 CrossRefGoogle Scholar
  9. Hosiasson-Lindenbaum J. (1940) On confirmation. Journal of Symbolic Logic 5: 133–148. doi: 10.2307/2268173 CrossRefGoogle Scholar
  10. Korb K.B. (1993) Infinitely many resolutions of Hempel’s paradox. In: Fagin R. (eds) Theoretical aspects of reasoning about knowledge: Proceedings of the fifth conference. Morgan Kaufmann, Asilomar, CA, pp 138–149Google Scholar
  11. Maher P. (1999) Inductive logic and the ravens paradox. Philosophy of Science 66: 50–70. doi: 10.1086/392676 CrossRefGoogle Scholar
  12. Maher P. (2000) Probabilities for two properties. Erkenntnis 52: 63–91. doi: 10.1023/A:1005557828204 CrossRefGoogle Scholar
  13. Maher P. (2004) Probability captures the logic of scientific confirmation. In: Hitchcock C. (eds) Contemporary debates in the philosophy of science. Blackwell, Oxford, pp 69–93Google Scholar
  14. Nicod J. (1923) Le Problème Logique de l’Induction. Alcan, ParisGoogle Scholar
  15. Quine W. V. O. (1969). Natural kinds. In Ontological relativity and other essays (pp. 114–138). New York: Columbia University Press.Google Scholar
  16. Rosenkrantz R. (1977) Inference, method and decision. Reidel, Boston, MAGoogle Scholar
  17. Sainsbury R.M. (1995) Paradoxes (2nd ed). Cambridge University Press, CambridgeGoogle Scholar
  18. Swinburne R.G. (1971) The paradoxes of confirmation—a survey. American Philosophical Quarterly 8: 318–330Google Scholar
  19. Sylvan R., Nola R. (1991) Confirmation without paradoxes. In: Schurz G., Dorn G.J.W. (eds) Advances in scientific philosophy: Essays in honour of Paul Weingartner. Rodopi, Amsterdam, pp 5–44Google Scholar
  20. Vranas P.B.M. (2004) Hempel’s raven paradox: A lacuna in the standard Bayesian solution. The British Journal for the Philosophy of Science 55: 545–560. doi: 10.1093/bjps/55.3.545 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.University of British ColumbiaVancouverCanada

Personalised recommendations