, Volume 169, Issue 2, pp 241–257 | Cite as

Extending probabilistic dynamic epistemic logic

  • Joshua Sack


This paper aims to extend in two directions the probabilistic dynamic epistemic logic provided in Kooi’s paper (J Logic Lang Inform 12(4):381–408, 2003) and to relate these extensions to ones made in van Benthem et al. (Proceedings of LOFT’06. Liverpool, 2006). Kooi’s probabilistic dynamic epistemic logic adds to probabilistic epistemic logic sentences that express consequences of public announcements. The paper (van Benthem et al., Proceedings of LOFT’06. Liverpool, 2006) extends (Kooi, J Logic Lang Inform 12(4):381–408, 2003) to using action models, but in both papers, the probabilities are discrete, and are defined on trivial σ-algebras over finite sample spaces. The first extension offered in this paper is to add a previous-time operator to a probabilistic dynamic epistemic logic similar to Kooi’s in (J Logic Lang Inform 12(4):381–408, 2003). The other is to involve non-trivial σ-algebras and continuous probabilities in probabilistic dynamic epistemic logic.


Dynamic epistemic logic Modal logic Probability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baltag, A., Moss, L., & Solecki, S. (2003). Logics for epistemic actions: Completeness, decidability, expressivity. Indiana University (Manuscript).Google Scholar
  2. Baltag, A., & Moss, L. S. (2004). Logics for epistemic programs. Synthese, 139(2, Knowledge, Rationality & Action),165–224.Google Scholar
  3. Fagin R., Halpern J. (1994) Reasoning about knowledge and probability. Journal of the ACM 41(2): 340–367CrossRefGoogle Scholar
  4. Fagin, R., Halpern, J., Moses, Y., & Vardi, M. (1995). Reasoning about knowledge. The MIT Press.Google Scholar
  5. Gariepy R.F., Ziemer W.P. (1995) Modern real analysis. PWS Publishing Company, BostonGoogle Scholar
  6. Halpern J., Tuttle M. (1993) Knowledge, probability, and adversaries. Journal of the ACM 40(4): 917–962CrossRefGoogle Scholar
  7. Kooi B.P. (2003) Probabilistic dynamic epistemic logic. Journal of Logic, Language and Information 12(4): 381–408CrossRefGoogle Scholar
  8. Sack, J. (2007). Logic for update products and steps into the past (Manuscript).Google Scholar
  9. Sack J. (2008) Temporal languages for epistemic programs. Journal of Logic, Language and Information 17(2): 183–216CrossRefGoogle Scholar
  10. van Benthem, J., Gerbrandy, J., & Kooi, B. (2006). Dynamic update with probabilities. In W. van der Hoek & M. Wooldridge (Eds.), Proceedings of LOFT’06. LiverpoolGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.School of Computer ScienceReykjavík UniversityReykjavíkIceland

Personalised recommendations