, Volume 174, Issue 2, pp 295–314 | Cite as

Leśniewski’s characteristica universalis

  • Arianna Betti
Open Access


Leśniewski’s systems deviate greatly from standard logic in some basic features. The deviant aspects are rather well known, and often cited among the reasons why Leśniewski’s work enjoys little recognition. This paper is an attempt to explain why those aspects should be there at all. Leśniewski built his systems inspired by a dream close to Leibniz’s characteristica universalis: a perfect system of deductive theories encoding our knowledge of the world, based on a perfect language. My main claim is that Leśniewski built his characteristica universalis following the conditions of de Jong and Betti’s Classical Model of Science (2008) to an astounding degree. While showing this I give an overview of the architecture of Leśniewski’s systems and of their fundamental characteristics. I suggest among others that the aesthetic constraints Leśniewski put on axioms and primitive terms have epistemological relevance.


Leśniewski’s systems Classical Model of Science Logic Axiomatics characteristica universalis 


Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. Cantù, P. (2008). Aristotle’s prohibition rule on kind-crossing and the definition of mathematics as a science of quantities. Synthese. doi: 10.1007/s11229-008-9419-2.
  2. Canty, J. (1967). Leśniewski’s ontology and Gödel’s incompleteness theorem. PhD Thesis, University of Notre Dame, Indiana.Google Scholar
  3. Dascal M. (1987) Leibniz. Language, signs and thought. John Benjamins Publication Co., AmsterdamGoogle Scholar
  4. de Jong, W. R. (2008). The analytic-synthetic distinction and the classical model of science: Kant, Bolzano and Frege. Synthese. doi: 10.1007/s11229-008-9420-9.
  5. de Jong W.R. (1996) Gottlob Frege and the analytic-synthetic distinction within the framework of the classical model of science. Kant-Studien 87: 290–324CrossRefGoogle Scholar
  6. de Jong, W. R., & Betti, A. (2008). The classical model of science: A millennia-old model of scientific rationality. Synthese.Google Scholar
  7. Ditchen, R., Glibowski, E., & Kościk, S. (1963). O pewnym układzie pojȩć pierwotnych geometrii elementarnej. Acta Universitatis Wratislaviensis, 17, Matematyka Fizyka Astronomia IV, 5–11.Google Scholar
  8. Frege, G. (1884). Die Grundlagen der Arithmetik. Eine logisch-mathematische Untersuchung über den Begriff der Zahl. Breslau: W. Koebner.Google Scholar
  9. Husserl, E. (1900/1901). Logische Untersuchungen. Halle a.d.S.: Max Niemeyer = Husserliana XVIII, XIX/1, XIX/2. The Hague: M. Nijhoff. J. N. Findlay (Trans.). (1970). London: Routledge & Kegan Paul.Google Scholar
  10. Korte, T. (2008). Frege’s Begriffsschrift as a lingua characteristica. Synthese. doi: 10.1007/s11229-008-9422-9.
  11. LeBlanc, A. O. V. (1983). A study of the axiomatic foundation of mereology. MA Thesis, University of Manchester.Google Scholar
  12. LeBlanc, A. O. V. (1991). Leśniewski’s computative Protothetic. PhD Thesis, University of Manchester.Google Scholar
  13. Leibniz, G. W. (1677). Leibniz an Jean Gallois. In Sämtliche Schriften und Briefe. Herausgegeben von der Berlin-Brandenburgischen Akademie der Wissenschaften und der Akademie der Wissenschaften in Göttingen, Zweite Reihe, Philosophischer Briefwechsel, Erster Band, Akademie Verlag (pp. 566–571). Eng. trans. Dascal (1987, p. 164, n. 2).Google Scholar
  14. Leibniz, G. W. ( > 1684). Untitled. In C. I. Gerhardt (Ed.) (1875–1890), Die philosophischen Schriften von G. W. Leibniz, VII, repr. Hildesheim (1965, pp. 204–207). Trans. Thought, signs and the foundation of logic. In Dascal (1987, pp. 181–188).Google Scholar
  15. Leśniewski, S. (1916). Podstawy ogólnej teorji mnogości. I (Czȩść. Ingredyens. Mnogość. Klasa. Element. Podmnogość. Niektóre ciekawe rodzaje klas). Prace Polskiego Koła Naukowego w Moskwie, Sekcja matematyczno-przyrodnicza. Eng. trans. Leśniewski (1991, pp. 129–173).Google Scholar
  16. Leśniewski, S. (1929). Grundzüge eines neuen Systems der Grundlagen der Mathematik. Fundamenta Mathematicae, XIV, 1–81. Eng. trans. Leśniewski (1991, pp. 410–492).Google Scholar
  17. Leśniewski, S. (1930). Über die Grundlagen der Ontologie. Sprawozdania z posiedzeń Towarzystwa Naukowego Warszawskiego – Comptes rendus des séances de la société des sciences et des lettres de Varsovie, Wydział III – nauk matematyczno-fizycznych, XXIII 1–3, 111–132. Eng. trans. Leśniewski (1991, pp. 606–628).Google Scholar
  18. Leśniewski, S. (1931). Über Definitionen in der sogenannten Theorie der Deduktion. Sprawozdania z posiedzeń Towarzystwa Naukowego Warszawskiego – Comptes rendus des séances de la société des sciences et des lettres de Varsovie, Wydział III – nauk matematyczno-fizycznych XXIV, 289–309. Eng. trans. Leśniewski (1991, pp. 629–648).Google Scholar
  19. Leśniewski, S. (1938). Einleitende Bemerkungen zur Fortsetzung meiner Mitteilung u. d. T. ‘Grundzüge eines neuen Systems der Grundlagen der Mathematik’. Collectanea Logica, 1, 1939, 1–60. Offprint dated 1938. Eng. trans. Leśniewski (1991, pp. 649–710).Google Scholar
  20. Leśniewski, S. (1939). Grundzüge eines neuen Systems der Grundlagen der Mathematik, Sect. 12. Collectanea Logica, 1, 61–144. Eng. trans. Leśniewski (1991, pp. 492–605).Google Scholar
  21. Leśniewski, S. (1991). In S. J. Surma, J. T. Szrednicki, D. I. Barnett, & V. F. Rickey (Eds.), Collected works. Dordrecht: Kluwer.Google Scholar
  22. Łukasiewicz, J., & Tarski, A. (1930). Untersuchungen über den Aussagenkalkül. Sprawozdania z posiedzeń Towarzystwa Naukowego Warszawskiego - Comptes rendus des séances de la societé des sciences et des lettres de Varsovie XXIII, Cl. III, 30–50.Google Scholar
  23. Luschei E.C. (1962) The logical systems of Leśniewski. North-Holland, AmsterdamGoogle Scholar
  24. Scholz, H. (1930/1975). The ancient axiomatic theory. In J. Barnes, M. Schofield, & R. Sorabji (Eds.) (1975), Articles on Aristotle. I. Science (pp. 50–64). London: Duckworth. Trans. of: Die Axiomatik der Alten. (1930). Blätter für Deutsche Philosophie, IV, 259–278.Google Scholar
  25. Sobociński B. (1955/1956) On well-constructed axiom systems. VI Rocznik Polskiego Towarzystwa Naukowego na Obczyźnie 6: 54–65Google Scholar
  26. Srzednicki, J.T.J., Stachniak, Z. (eds) (1988) S. Leśniewski’s lecture notes in logic. Kluwer, DordrechtGoogle Scholar
  27. Sullivan T.H. (1971) Affine geometry having a solid as primitive. Notre-Dame Journal of Formal Logic 12: 1–61CrossRefGoogle Scholar
  28. Sullivan T.H. (1972) The name solid as primitive in projective geometry. Notre-Dame Journal of Formal Logic 13: 95–97CrossRefGoogle Scholar
  29. Tarski, A. (1929). Les fondements de la géométrie des corps (résumé). Ksiȩga Pamia̧tkowa Pierwszego Polskiego Zjazdu Matematycznego, Lwów, 7-10.IX.1927 – Supplement to Annales de la Société Polonaise de Mathématique, Krakow (1929, pp. 29–33). Eng. trans. Tarski, A. (1956). Logic, semantics, metamathematics. Papers from 1923 to 1938 (pp. 24–29). Oxford: Clarendon Press.Google Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  1. 1.Faculteit der WijsbegeerteVrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations