, Volume 174, Issue 2, pp 185–203 | Cite as

The Classical Model of Science: a millennia-old model of scientific rationality

Open Access


Throughout more than two millennia philosophers adhered massively to ideal standards of scientific rationality going back ultimately to Aristotle’s Analytica posteriora. These standards got progressively shaped by and adapted to new scientific needs and tendencies. Nevertheless, a core of conditions capturing the fundamentals of what a proper science should look like remained remarkably constant all along. Call this cluster of conditions the Classical Model of Science. In this paper we will do two things. First of all, we will propose a general and systematized account of the Classical Model of Science. Secondly, we will offer an analysis of the philosophical significance of this model at different historical junctures by giving an overview of the connections it has had with a number of important topics. The latter include the analytic-synthetic distinction, the axiomatic method, the hierarchical order of sciences and the status of logic as a science. Our claim is that particularly fruitful insights are gained by seeing themes such as these against the background of the Classical Model of Science. In an appendix we deal with the historiographical background of this model by considering the systematizations of Aristotle’s theory of science offered by Heinrich Scholz, and in his footsteps by Evert W. Beth.


Axiomatics Classical Model of Science Scientific explanation Aristotle Logic of Port-Royal Bolzano 


Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. In J. Barnes (Trans. & comm.) (1994). Posterior analytics. Oxford: Clarendon Press.Google Scholar
  2. Arnauld, A., & Nicole, P. (1662). La logique ou l’art de penser. In P. Clair & F. Girbal (Eds.), (1993). Paris: Vrin. Quotations from J. V. Buroker (Ed. & Trans.) (1996). Logic or the art of thinking. Cambridge: Cambridge University Press.Google Scholar
  3. Barnes, J. (1975). Aristotle’s theory of demonstration. In Barnes et al. (Eds.) (pp. 65–87).Google Scholar
  4. Barnes J., Schofield M., Sorabji R. (1975) Articles on Aristotle I Science. Duckworth, LondonGoogle Scholar
  5. Barnes. (1994). Commentary. In Aristotle, Posterior analytics J. Barnes (Trans. & comm.) (pp. 81–271). Oxford: Clarendon Press.Google Scholar
  6. Beaney, M. (2007). Analysis. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Fall 2007 Edition.
  7. Berg J. (1962) Bolzano’s logic. Almqvist & Wiksell, StockholmGoogle Scholar
  8. Beth E.W. (1943) Verleden en toekomst der wetenschappelijke wijsbegeerte. De Gids, 107: 55–67Google Scholar
  9. Beth E.W. (1944) De wijsbegeerte der wiskunde van Parmenides tot Bolzano. Dekker & Van de Vegt, Antwerpen/NijmegenGoogle Scholar
  10. Beth E.W. (1950) Critical epochs in the development of the theory of science. The British Journal of the Philosophy of Science, 1: 27–41CrossRefGoogle Scholar
  11. Beth E.W. (1965) The foundations of mathematics A study in the philosophy of science 2nd ed. North-Holland Publishing Company, AmsterdamGoogle Scholar
  12. Betti, A. (2008a). Lesniewski’s characteristicia universalis. Synthese. doi: 10.1007/s11229-008-9423-6.
  13. Betti, A. (2008b). Polish axiomatics and its truth: On Tarski’s Leśniewskian background and the Ajdukiewicz connection. In D. Patterson (Ed.), New essays on Tarski and philosophy. Oxford: Oxford University Press (in press).Google Scholar
  14. Bolzano, B. (1837). Wissenschaftslehre. In L. Winter et al. (Eds.) (1969). Bernard Bolzano Gesamtausgabe. Reihe 1 (Vol. 11–14). Stuttgart-Bad Canstatt: Frommann-Holzboog.Google Scholar
  15. Cantú, P. (2008). Aristotle’s prohibition rule on kind-crossing and the definition of mathematics as a science of quantities. Synthese. doi: 10.1007/s11229-008-9419-2.
  16. de Jong W.R. (2008) How is metaphysics as a science possible?. The Review of Metaphysics, 39: 235–274Google Scholar
  17. de Jong W.R. (1996) Gottlob Frege and the analytic-synthetic distinction within the framework of the Aristotelian model of science. Kant-Studien, 87: 290–324CrossRefGoogle Scholar
  18. de Jong W.R. (2001) Bernard Bolzano, analyticity and the Aristotelian model of science. Kant-Studien, 92: 328–349CrossRefGoogle Scholar
  19. de Jong, W. R. (2008). The analytic-synthetic distinction and the classical model of science: Kant, Bolzano and Frege. Synthese. doi: 10.1007/s11229-008-9420-9.
  20. Descartes, R. (1637). Discours de la méthode. In Ch. Adam & P. Tannery (Eds.) (1964–1971). Oeuvres de Descartes (Vol. VI, pp. 1–78). Paris: Vrin.Google Scholar
  21. Detel, W. (1993). Forschungsergebnisse. In Aristotle. Werke in Deutscher Übersetzung. Vol. III, part II/1: Analytica posteriora (pp. 263–334). H. Flashar (Ed.), W. Detel (Trans. & comm.). Berlin: Akademie Verlag.Google Scholar
  22. Dijksterhuis, E. J. (1986). The mechanization of the world-picture. Pythagoras to Newton. Princeton (N.J.): Princeton University Press. First published in Dutch: De mechanisering van het wereldbeeld (1950). Amsterdam: Meulenhoff.Google Scholar
  23. Frege, G. (1884). Die Grundlagen der Arithmetik. Eine logisch-mathematische Untersuchung über den Begriff der Zahl (1961). Hildesheim: Georg Olms.Google Scholar
  24. Gassendi, P. (1658). Institutio Logica 1658. H. Jones (Ed., Trans. & Intr.). (1988). Assen: Van Gorcum.Google Scholar
  25. Granger G.-G. (1976) La théorie aristotélicienne de la science. Aubier Montagne, ParisGoogle Scholar
  26. Hilbert D. (1918) Axiomatisches Denken. Mathematische Annalen, 78: 405–415CrossRefGoogle Scholar
  27. Husserl, E. (1900/1901). Logische Untersuchungen. Halle a.d.S.: Max Niemeyer = Husserliana XVIII, XIX/1, XIX/2. The Hague/Boston/London: M. Nijhoff. J. N. Findlay (Trans.) (1970). London/Henley: Routledge & Kegan Paul.Google Scholar
  28. Kant, I. (1787). Kritik der reinen Vernunft (1998). Hamburg: Felix Meiner.Google Scholar
  29. Korte, T. (2008). Frege’s Begriffsschrift as a lingua characteristica. Synthese. doi: 10.1007/s11229-008-9421-8.
  30. Lapointe, S. (2008). Bolzano, a priori knowledge and the classical model of science. Synthese. doi: 10.1007/s11229-008-9421-8.
  31. Mancosu P. (1991) On the status of proofs by contradiction in the seventeenth century. Synthese, 88: 15–41CrossRefGoogle Scholar
  32. Mancosu P. (1996) Philosophy of mathematics and mathematical practice in the seventeenth century. Oxford University Press, New York/OxfordGoogle Scholar
  33. Mignucci M. (1965) La teoria aristotelica della scienza. Sansoni, FirenzeGoogle Scholar
  34. Mignucci M. (1975). L’argomentazione dimostrativa in Aristotele. Commento agli Analitici Secondi. Antenore, PadovaGoogle Scholar
  35. Mikkeli H. (2002) Italian Aristotelians on the debate over the subalternation of medicine to natural philosophy. In: Leijenhorst C., Lüthy C., Thijssen J.M.M.H. (eds) The dynamics of Aristotelian natural philosophy from antiquity to the seventeenth century. Brill, Leiden, pp 307–324Google Scholar
  36. Ong W.J. (1979) Ramus. Method, and the decay of dialogue. Octagon Books, New YorkGoogle Scholar
  37. Pascal, B. (1965). In L. Brunschvicq, P. Bourton, & F. Gazier (Eds.), Oeuvres de Blaise Pascal. Vaduz: Krause Reprints.Google Scholar
  38. Randall J.H. (1961) The School of Padua and the emergence of modern science. Antenore, PadovaGoogle Scholar
  39. Scholz, H. (1930/1975). The ancient axioamtic theory. In J. Barnes et al. (Eds.) (1975) (pp. 50–64). (Trans. Die axiomatik der Alten. (1930). Blätter für Deutsche Philosophie, IV, 259–278.Google Scholar
  40. Tatzel A. (2002) Bolzano’s theory of ground and consequence. Notre-Dame Journal of Formal Logic, 43: 1–24CrossRefGoogle Scholar
  41. Vasoli C. (1984) La logica. In: Folena G., Arnaldi G., Pastore Stocchi M. (eds) Storia della cultura veneta (Vol. III/3). Neri Pozza, Vicenza, pp 35–73Google Scholar
  42. Verdonk J.J. (1966) Petrus Ramus en de wiskunde. Van Gorcum, AssenGoogle Scholar
  43. Wolff, Chr. (1713). Vernünftigen Gedanken von den Kräften des menslichen Verstandes und ihrem richtigen Gebrauche in Erkenntnis der Wahrheit (1978). Hildesheim: Olms.Google Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  1. 1.Faculteit der WijsbegeerteVrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations