Synthese

, Volume 165, Issue 2, pp 247–268 | Cite as

Modelling simultaneous games in dynamic logic

Open Access
Article

Abstract

We make a proposal for formalizing simultaneous games at the abstraction level of player’s powers, combining ideas from dynamic logic of sequential games and concurrent dynamic logic. We prove completeness for a new system of ‘concurrent game logic’ CDGL with respect to finite non-determined games. We also show how this system raises new mathematical issues, and throws light on branching quantifiers and independence-friendly evaluation games for first-order logic.

Keywords

Simultaneous games Parallelism Game logic Evaluation games IF logic Branching quantifiers 

References

  1. Abramsky S. (2006) Socially responsive, environmentally friendly logic. In: Tuomo A., Pietarinen A.-V. (eds) Truth and games: Essays in honour of Gabriel Sandu. Acta Philosophica Fennica, HelsinkiGoogle Scholar
  2. Abramsky S., Jagadeesan R. (1994) Games and full completeness for multiplicative linear logic. Journal of Symbolic Logic 59: 543–574CrossRefGoogle Scholar
  3. Alur R., Henzinger T.A., Kupferman O. (2002) Alternating-time temporal logic. Journal of the ACM 49: 672–713CrossRefGoogle Scholar
  4. Baeten, J. C. M., & Verhoef, C. (1995). Concrete process algebra. In S. Abramsky, D. M. Gabbay, & T. S. E. Maibaum (Eds.), Handbook of logic in computer science (Vol. 4, pp. 149–268). London: Semantic Modelling, Clarendon Press.Google Scholar
  5. Bergstra, J.A., Ponse, A., Smolka , S.A. (eds) (2001) Handbook of process algebra. North-Holland, AmsterdamGoogle Scholar
  6. Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal logic. CUP.Google Scholar
  7. Blass A. (1972) Degrees of indeterminacy of games. Fundamenta Mathematicae 77: 151–166Google Scholar
  8. Ghosh, S. (2008). Strategies made explicit in dynamic game logic. In J. van Benthem & E. Pacuit (Eds.), Proceedings of the Workshop on Logic and Intelligent Interaction, ESSLLI 2008, pp. 74–81.Google Scholar
  9. Goldblatt R. (1992) Parallel action: Concurrent dynamic logic with independent modalities. Studia Logica 51: 551–578CrossRefGoogle Scholar
  10. Goranko V. (2003) Basic algebra of game equivalences. Studia Logica 75: 221–238CrossRefGoogle Scholar
  11. Hansen, H., Kupke, C., & Pacuit, E. (2007). Bisimulation for neighbourhood structures. In M. Haveraaen, U. Montanari, & T. Mossakowski (Eds.), Proceedings of 2nd Conference on Algebra and Coalgebra in Computer Science (CALCO 2007) (pp. 279–293). LNCS 4624.Google Scholar
  12. Harel, D., Kozen, D., & Tiuryn, J. (2000). Dynamic logic. The MIT Press.Google Scholar
  13. Hintikka, J., & Sandu, G. (1997). Game-theoretical semantics. In J. van Benthem & A. ter Meulen (Eds.), Handbook of logic and language (pp. 361–410). MIT Press.Google Scholar
  14. Hodges W. (1997) Compositional semantics for a language of imperfect information. Journal of the Interest Group in Pure and Applied Logics 5: 539–563Google Scholar
  15. Netchitailov, I. (2000). An extension of game logic with parallel operators. Master’s thesis, University of Amsterdam.Google Scholar
  16. Parikh R. (1985) The logic of games and its applications. Annals of Discrete Mathematics 24: 111–140Google Scholar
  17. Pauly, M. (2001). Logics for social software. Ph.D. Dissertation, University of Amsterdam.Google Scholar
  18. Pauly M., Parikh R. (2003) Game logic—An overview. Studia Logica 75: 165–182CrossRefGoogle Scholar
  19. Peleg D. (1987) Concurrent dynamic logic. Journal of the ACM 34: 450–479CrossRefGoogle Scholar
  20. Sevenster, M. (2006). Branching of imperfect information: Logic, games and computation. Ph.D. dissertation, University of Amsterdam.Google Scholar
  21. van Benthem, J. (1999). Logic in games. Lecture Notes, Amsterdam and Stanford.Google Scholar
  22. van Benthem J. (2001) Games in dynamic-epistemic logic. Bulletin of Economic Research 53: 219–248CrossRefGoogle Scholar
  23. van Benthem J. (2002) Extensive games as process models. Journal of Logic, Language and Information 11: 289–313CrossRefGoogle Scholar
  24. van Benthem J. (2003) Logic games are complete for game logics. Studia Logica 75: 183–203CrossRefGoogle Scholar
  25. van Benthem, J. (2006). The epistemic logic of IF games. In R. E. Auxier & L. E. Hahn (Eds.), Philosophy of Jaakko Hintikka. Open Court.Google Scholar
  26. van Benthem, J. (2007). In praise of strategies, 2007. In J. van Eijck & R. Verbrugge (Eds.), Games, actions and social software (to appear).Google Scholar
  27. van Benthem J., Ghosh S., Liu F. (2007) Modelling simutaneous games with concurrent dynamic logic. In: van Benthem J., Ju S., Veltman F. (eds) A meeting of the minds—Proceedings of the workshop on logic, rationality and interaction. King’s College Publications, London, pp 243–258Google Scholar
  28. van Benthem, J., & Sarenac, D. (2004). The geometry of knowledge. In J.-Y. Béziau, A. Costa Leite, & A. Facchini (Eds.), Aspects of universal logic (pp. 1–31). Centre de Recherches Sémiologiques, Université de Neuchatel.Google Scholar
  29. van Benthem J., van Eijck J., Stebletsova V. (1994) Modal logic, transition systems and processes. Journal of Logic Computation 4: 1–50CrossRefGoogle Scholar
  30. van Eijck, J., & Verbrugge, R. (2008). A fresh look at propositional dynamic logic and game logic. CWI Amsterdam and Department of AI, University of Groningen.Google Scholar
  31. Venema Y. (2003) Representation of game algebras. Studia Logica 75: 239–257CrossRefGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • Johan van Benthem
    • 1
    • 2
  • Sujata Ghosh
    • 3
    • 4
  • Fenrong Liu
    • 1
    • 5
  1. 1.Institute for Logic, Language and ComputationUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of PhilosophyStanford UniversityStandordUSA
  3. 3.Department of MathematicsVisva-BharatiShantiniketanIndia
  4. 4.Center for Soft Computing ResearchIndian Statistical InstituteKolkataIndia
  5. 5.Department of Philosophy, School of Humanities and Social SciencesTsinghua UniversityBeijingChina

Personalised recommendations