Synthese

, Volume 168, Issue 1, pp 151–178

Against digital ontology

Article

Abstract

The paper argues that digital ontology (the ultimate nature of reality is digital, and the universe is a computational system equivalent to a Turing Machine) should be carefully distinguished from informational ontology (the ultimate nature of reality is structural), in order to abandon the former and retain only the latter as a promising line of research. Digital vs. analogue is a Boolean dichotomy typical of our computational paradigm, but digital and analogue are only “modes of presentation” of Being (to paraphrase Kant), that is, ways in which reality is experienced or conceptualised by an epistemic agent at a given level of abstraction. A preferable alternative is provided by an informational approach to structural realism, according to which knowledge of the world is knowledge of its structures. The most reasonable ontological commitment turns out to be in favour of an interpretation of reality as the totality of structures dynamically interacting with each other. The paper is the first part (the pars destruens) of a two-part piece of research. The pars construens, entitled “A Defence of Informational Structural Realism”, is developed in a separate article, also published in this journal.

Keywords

Analogue Continuous Digital Digital ontology Digital physics Discrete Informational structural realism Kant’s antinomies Structural realism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, P. (2002). Universe is a computer. Nature News, June 3. doi:10.1038/news020527-16.
  2. Chaitin G.J. (2005) Meta math!: The quest for omega. Pantheon Books, New YorkGoogle Scholar
  3. Chakravartty A. (2003) The structuralist conception of objects. Philosophy of Science 70(5): 867–878CrossRefGoogle Scholar
  4. Chalmers D.J. (1996) The conscious mind: In search of a fundamental theory. Oxford University Press, New YorkGoogle Scholar
  5. Dedekind, R. (1963). Continuity and irrational numbers, in essays on the theory of numbers. New York: Dover, originally published in 1872.Google Scholar
  6. Roever W.-P., Engelhardt K. (1998) Data refinement: Model-oriented proof methods and their comparison. Cambridge University Press, CambridgeGoogle Scholar
  7. Feynman, R. P. (1992). The character of physical law. London: Penguin, originally published in 1965.Google Scholar
  8. Floridi, L. (2004). Informational realism. In J. Weckert & Y. Al-Saggaf (Eds.), Computers and Philosophy 2003—Selected Papers from the Computer and Philosophy Conference (Cap 2003) Acs—Conferences in Research and Practice in Information Technology, pp. 7–12.Google Scholar
  9. Floridi L. (2008) A defence of informational structural realism. Synthese 161(2): 219–253CrossRefGoogle Scholar
  10. Floridi L., Sanders J.W. (2004) The method of abstraction. In: Negrotti M.(eds) Yearbook of the artificial—Nature, culture and technology, models in contemporary sciences. Peter Lang, Bern, pp 177–220Google Scholar
  11. Fredkin, E. (1992). Finite nature. In Proceedings of the XXVIIth Rencontre de Moriond, March 22–28, 1992, Les Arcs, Savoie, France. Editions Frontieres: Gif-sur-Yvette, France.Google Scholar
  12. Fredkin E. (2003) The digital perspective. International Journal of Theoretical Physics 42(2): 145CrossRefGoogle Scholar
  13. Fredkin, E. (2003b). An introduction to digital philosophy. International Journal of Theoretical Physics, 42(2), 189–247. Also available online at http://digitalphilosophy.org/
  14. Fredkin, E. (online). Digital mechanics—An informational process based on reversible universal cellular automata. http://www.digitalphilosophy.org/dm_paper.htm
  15. French, S. (2001). Symmetry, structure and the constitution of objects. Symmetries in Physics, New Reflections: Oxford Workshop, January 2001, Oxford.Google Scholar
  16. Goodman N. (1968) Languages of art: An approach to a theory of symbols. Indianapolis, Bobbs-MerrillGoogle Scholar
  17. Gower B. (2000) Cassirer, Schlick and ‘Structural’ realism: The philosophy of the exact sciences in the background to early logical empiricism. British Journal for the History of Philosophy 8(1): 71–106CrossRefGoogle Scholar
  18. Hoare C.A.R., He J. (1998) Unifying theories of programming. Prentice Hall, LondonGoogle Scholar
  19. Holden T.A. (2004) The architecture of matter: Galileo to Kant. Clarendon Press, OxfordCrossRefGoogle Scholar
  20. Hyötyniemi, H. (1996). Turing machines are recurrent neural networks. In J. Alander, T. Honkela, & M. Jakobsson (Eds.), STeP’96—Genes, nets and symbols (pp. 13–24). Helsinki, Finland: Publications of the Finnish Artificial Intelligence Society (FAIS).Google Scholar
  21. Kant I. (1998) Critique of pure reason repr. w. corr. Cambridge University Press, CambridgeGoogle Scholar
  22. Ladyman J. (1998) What is structural realism?. Studies in History and Philosophy of Science 29((3): 409–424CrossRefGoogle Scholar
  23. Langton R. (2004) Elusive knowledge of things in themselves. Australasian Journal of Philosophy 82(1): 129–136CrossRefGoogle Scholar
  24. Lesne A. (2007) The discrete versus continuous controversy in physics. Mathematical Structures in Computer Science 17(2): 185–223CrossRefGoogle Scholar
  25. Lewis D. (1971) Analog and digital. Nous 5(3): 321–327Google Scholar
  26. Lloyd S. (2002) Computational capacity of the universe. Physical Review Letters 88(23): 237901–237904CrossRefGoogle Scholar
  27. Lloyd S. (2006) Programming the universe: From the Big Bang to quantum computers. Jonathan Cape, LondonGoogle Scholar
  28. Margolus N. (2003) Looking at nature as a computer. International Journal of Theoretical Physics 42(2): 309–327CrossRefGoogle Scholar
  29. Müller, V. C. (forthcoming). What is a digital state?Google Scholar
  30. Pais, A. (2005). Subtle is the lord: The science and the life of Albert Einstein (Oxford; New York: Oxford University Press), originally published in 1982, republished with a new foreword by Sir Roger Penrose.Google Scholar
  31. Petrov, P. (2003). Church-Turing thesis is almost equivalent to Zuse-Fredkin Thesis (an argument in support of Zuse-Fredkin Thesis). In Proceedings of the 3rd WSEAS International Conference on Systems Theory and Scientific Computation, Special Session on Cellular Automata and Applications (ISTASC’03), Rhodes Island, Greece.Google Scholar
  32. Saunders S. (2003) Structural realism, again. Synthese 136(1): 127–133CrossRefGoogle Scholar
  33. Sayre K.M. (1976) Cybernetics and the philosophy of mind. Routledge and Kegan Paul, LondonGoogle Scholar
  34. Schmidhuber, J. (1997). A computer scientist’s view of life, the universe, and everything. Lecture Notes in Computer Science, 1337, 201–208.CrossRefGoogle Scholar
  35. Schmidhuber, J. (forthcoming). All computable universes. Spektrum der Wissenschaft (German edition of Scientific American).Google Scholar
  36. Shannon, C. E., & Weaver, W. (1949 rep. 1998). The mathematical theory of communication. Urbana: University of Illinois Press.Google Scholar
  37. Siegelmann H.T. (1998) Neural networks and analog computation: Beyond the turing limit. Birkhèauser, BostonGoogle Scholar
  38. Steinhart E. (1998) Digital metaphysics. In: Bynum T., Moor J.(eds) The digital phoenix: How computers are changing philosophy.. Blackwell, New York, pp 117–134Google Scholar
  39. Steinhart, E. (2003). The physics of information. In L. Floridi (Ed.), Blackwell guide to the philosophy of computing and information. Oxford: Blackwell, chapter 13.Google Scholar
  40. Toffoli T. (2003) A digital perspective and the quest for substrate-universal behaviors. International Journal of Theoretical Physics 42: 147–151CrossRefGoogle Scholar
  41. ’t Hooft G. (1997) In search of the ultimate building blocks. Cambridge University Press, CambridgeGoogle Scholar
  42. ’t Hooft G. (2002) How does god play dice? (Pre-)determinism at the Planck scale. In: Bertlmann R.A., Zeilinger A.(eds) Quantum [Un]speakables, from bell to quantum information.. Springer Verlag, Berlin, pp 307–316Google Scholar
  43. ’t Hooft G. (2003) Can quantum mechanics be reconciled with cellular automata?. International Journal of Theoretical Physics 42: 349–354CrossRefGoogle Scholar
  44. ’t Hooft G. (2005) Does god play dice?. Physics World 18(12): 21–23Google Scholar
  45. Turing A.M. (1950) Computing machinery and intelligence. Minds and Machines 59: 433–460Google Scholar
  46. Von Neumann J. (1966) Theory of self-reproducing automata. University of Illinois Press, Urbana, LondonGoogle Scholar
  47. Weinberg, S. (2002). Is the universe a computer? The New York Review of Books.Google Scholar
  48. Wheeler, J. A. (1990). Information, physics, quantum: The search for links. In W. H. Zureck (Ed.), Complexity entropy, and the physics of information. Redwood City, CA: Addison Wesley.Google Scholar
  49. Wolfram S. (2002) A new kind of science. Wolfram Media, Champaign, ILGoogle Scholar
  50. Worrall J. (1989) Structural realism: The best of both worlds?. Dialectica 43: 99–124CrossRefGoogle Scholar
  51. Zuse K. (1967) Rechnender Raum. Elektronische Datenverarbeitung 8: 336–344Google Scholar
  52. Zuse, K. (1969). Rechnender Raum. Braunschweig: Vieweg. Eng. tr. with the title Calculating Space, MIT Technical Translation AZT-70-164-GEMIT. Cambridge, MA: Massachusetts Institute of Technology (Project MAC), 1970.Google Scholar
  53. Zuse K. (1993) The computer, my life. Springer-Verlag, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of HumanitiesUniversity of HertfordshireHertfordshireUK
  2. 2.St Cross College and IEGUniversity of OxfordOxfordUK

Personalised recommendations