, Volume 159, Issue 3, pp 417–458 | Cite as

Free-energy and the brain

  • Karl J. FristonEmail author
  • Klaas E. Stephan
Open Access


If one formulates Helmholtz’s ideas about perception in terms of modern-day theories one arrives at a model of perceptual inference and learning that can explain a remarkable range of neurobiological facts. Using constructs from statistical physics it can be shown that the problems of inferring what cause our sensory inputs and learning causal regularities in the sensorium can be resolved using exactly the same principles. Furthermore, inference and learning can proceed in a biologically plausible fashion. The ensuing scheme rests on Empirical Bayes and hierarchical models of how sensory information is generated. The use of hierarchical models enables the brain to construct prior expectations in a dynamic and context-sensitive fashion. This scheme provides a principled way to understand many aspects of the brain’s organisation and responses. In this paper, we suggest that these perceptual processes are just one emergent property of systems that conform to a free-energy principle. The free-energy considered here represents a bound on the surprise inherent in any exchange with the environment, under expectations encoded by its state or configuration. A system can minimise free-energy by changing its configuration to change the way it samples the environment, or to change its expectations. These changes correspond to action and perception, respectively, and lead to an adaptive exchange with the environment that is characteristic of biological systems. This treatment implies that the system’s state and structure encode an implicit and probabilistic model of the environment. We will look at models entailed by the brain and how minimisation of free-energy can explain its dynamics and structure.


Variational Bayes Free-energy Inference Perception Action Value Learning Attention Selection Hierarchical 


  1. Andersen R.A. (1989) Visual and eye movement factions of the posterior parietal cortex. Annual Review of Neuroscience 12: 377–405CrossRefGoogle Scholar
  2. Angelucci A., Levitt J.B., Walton E.J., Hupe J.M., Bullier J., Lund J.S. (2002a) Circuits for local and global signal integration in primary visual cortex. Journal of Neuroscience 22: 8633–8646Google Scholar
  3. Angelucci A., Levitt J.B., Lund J.S. (2002b) Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. Progress in Brain Research 136: 373–388Google Scholar
  4. Ashby W.R. (1947) Principles of the self-organising dynamic system. Journal of General Physiology 37: 125–128Google Scholar
  5. Atick J.J., Redlich A.N. (1990) Towards a theory of early visual processing. Neural Computation 2:308–320Google Scholar
  6. Ballard D.H., Hinton G.E., Sejnowski T.J. (1983) Parallel visual computation. Nature 306: 21–26CrossRefGoogle Scholar
  7. Barlow H.B. (1961) Possible principles underlying the transformation of sensory messages. In: Rosenblith W.A. (eds). Sensory communication. MIT press, Cambridge, MAGoogle Scholar
  8. Bell A.J., Sejnowski T.J. (1995) An information maximisation approach to blind separation and blind de-convolution. Neural Computation 7: 1129–1159Google Scholar
  9. Borisyuk R., Hoppensteadt F. (2004) A theory of epineuronal memory. Neural Networks 17: 1427–1436CrossRefGoogle Scholar
  10. Crooks G.E. (1999) Entropy production fluctuation theorem and the non-equilibrium work relation for free-energy differences. Physical Review E 60: 2721–2726CrossRefGoogle Scholar
  11. Dayan P., Hinton G.E., Neal R.M. (1995) The Helmholtz machine. Neural Computation 7: 889–904CrossRefGoogle Scholar
  12. DeFelipe J., Alonso-Nanclares L., Arellano J.I. (2002) Microstructure of the neocortex: Comparative aspects. Journal of Neurocytology 31: 299–316CrossRefGoogle Scholar
  13. Dempster A.P., Laird N.M., Rubin D.B. (1977) Maximum likelihood from incomplete data via the EM algorithm. Journal of The Royal Statistical Society Series B 39: 1–38Google Scholar
  14. Edelman G.M. (1993) Neural Darwinism: Selection and reentrant signaling in higher brain function. Neuron 10: 115–125CrossRefGoogle Scholar
  15. Efron B., Morris C. (1973) Stein’s estimation rule and its competitors—an empirical Bayes approach. Journal of The American Statistical Association 68: 117–130CrossRefGoogle Scholar
  16. Evans D.J., Searles D.J. (2002) The fluctuation theorem. Advances in Physics 51: 1529–1585CrossRefGoogle Scholar
  17. Evans D.J. (2003) A non-equilibrium free-energy theorem for deterministic systems. Molecular Physics 101: 1551–1554CrossRefGoogle Scholar
  18. Felleman D.J., Van Essen D.C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1: 1–47CrossRefGoogle Scholar
  19. Feynman R.P. (1972). Statistical mechanics. Benjamin, Reading, MAGoogle Scholar
  20. Foldiak P. (1990). Forming sparse representations by local anti-Hebbian learning. Biological Cybernetics 64: 165–170CrossRefGoogle Scholar
  21. FristonK.J., Price C.J. (2001) Dynamic representations and generative models of brain function. Brain Research Bulletin 54: 275–285CrossRefGoogle Scholar
  22. Friston K.J. (2003) Learning and inference in the brain. Neural Networks 16: 1325–1352CrossRefGoogle Scholar
  23. Friston K.J. (2005) A theory of cortical responses. Philosophical Transactions of The Royal Society of London Series B-Biological Sciences 360: 815–836CrossRefGoogle Scholar
  24. Friston K.J. et al. (2006). Variational Bayes and the Laplace approximation. NeuroImage 34: 220–234CrossRefGoogle Scholar
  25. Friston, K. J. et al. (in preparation). DEM: A variational treatment of dynamic systems.Google Scholar
  26. Haken H. (1983) Synergistics: An introduction, Non-equilibrium phase transition and self-organisation in physics, chemistry and biology (3rd ed.). Springer, BerlinGoogle Scholar
  27. Han S., He X. (2003) Modulation of neural activities by enhanced local selection in the processing of compound stimuli. Human Brain Mapping 19: 273–281CrossRefGoogle Scholar
  28. Harth E, Unnikrishnan K.P., Pandya A.S. (1987) The inversion of sensory processing by feedback pathways: A model of visual cognitive functions. Science 237: 184–187CrossRefGoogle Scholar
  29. Harville D.A. (1977) Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association 72:320–338CrossRefGoogle Scholar
  30. Helmholtz., H. (1860/1962). Handbuch der physiologischen optik (Southall, J. P. C. (Ed.), English trans.), Vol. 3. New York: Dover.Google Scholar
  31. Henson R., Shallice T., Dolan R. (2000) Neuroimaging evidence for dissociable forms of repetition priming. Science 287: 1269–1272CrossRefGoogle Scholar
  32. Hinton, G. E., & von Cramp, D. (1993). Keeping neural networks simple by minimising the description length of weights. In Proceedings of COLT-93 (pp. 5–13).Google Scholar
  33. Hirsch J.A., Gilbert C.D. (1991) Synaptic physiology of horizontal connections in the cat’s visual cortex. The Journal of Neuroscience 11: 1800–1809Google Scholar
  34. Hochstein S., Ahissar M. (2002) View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron 36: 791–804CrossRefGoogle Scholar
  35. Huffman K.J., Krubitzer L. (2001) Area 3a: Topographic organization and cortical connections in marmoset monkeys. Cerebral Cortex 11: 849–867CrossRefGoogle Scholar
  36. Hupe J.M., James A.C., Payne B.R., Lomber S.G., Girard P.P.D., Bullier J. (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394: 784–787CrossRefGoogle Scholar
  37. Itti, L., & Baldi, P. (2006). Bayesian surprise attracts human attention. In Advances in neural information processing systems, Vol. 19 (NIPS*2005) (pp. 1–8). Cambridge, MA: MIT Press.Google Scholar
  38. Jääskeläinen I.P., Ahveninen J., Bonmassar G., Dale A.M., Ilmoniemi R.J., Levänen S., Lin F.-H., May P., Melcher J., Stufflebeam S., Tiitinen H., Belliveau J.W. (2004) Human posterior auditory cortex gates novel sounds to consciousness. Proceedings of the National Academy of Sciences USA 101: 6809–6814CrossRefGoogle Scholar
  39. Kass R.E., Steffey D. (1989) Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models). Journal of The American Statistical Association 407: 717–726CrossRefGoogle Scholar
  40. Kauffman S. (1993) Self-organisation on selection in evolution. Oxford University Press. Oxford, UKGoogle Scholar
  41. Kawato M., Hayakawa H., Inui T. (1993) A forward-inverse optics model of reciprocal connections between visual cortical areas. Network 4: 415–422CrossRefGoogle Scholar
  42. Kersten D., Mamassian P., Yuille A. (2004) Object perception as Bayesian inference. Annual Review of Psychology 55: 271–304CrossRefGoogle Scholar
  43. Kloucek P. (1998) The computational modeling of nonequilibrium thermodynamics of the martensitic transformations. Computational Mechanics 23: 239–254Google Scholar
  44. Körding K.P., Wolpert D.M. (2004) Bayesian integration in sensorimotor learning. Nature 427: 244–247CrossRefGoogle Scholar
  45. Lee T.S., Mumford D. (2003) Hierarchical Bayesian inference in the visual cortex. Journal of The Optical Society of America Optics Image Science and Vision 20: 1434–1448CrossRefGoogle Scholar
  46. Linsker R. (1990) Perceptual neural organisation: Some approaches based on network models and information theory. Annual Review of Neuroscience 13: 257–281CrossRefGoogle Scholar
  47. Locke J. (1690/1976) An essay concerning human understanding. Dent, LondonGoogle Scholar
  48. MacKay D.M. (1956) The epistemological problem for automata. In: Shannon C.E., McCarthy J. (eds). Automata studies. Princeton University Press, Princeton, NJ, pp. 235–251Google Scholar
  49. MacKay D.J.C. (1995) Free-energy minimisation algorithm for decoding and cryptoanalysis. Electronics Letters 31: 445–447CrossRefGoogle Scholar
  50. Maniadakis M., Trahanias P.E. (2006) Modelling brain emergent behaviours through coevolution of neural agents. Neural Networks 19(5): 705–720CrossRefGoogle Scholar
  51. March J.G. (1991) Exploration and exploitation in organizational learning. Organization Science 10(1): 299–316Google Scholar
  52. Martinez-Trujillo J.C., Treue S. (2004) Feature-based attention increases the selectivity of population responses in primate visual cortex. Current Biology 14: 744–751CrossRefGoogle Scholar
  53. Mesulam M.M. (1998). From sensation to cognition. Brain 121: 1013–1052CrossRefGoogle Scholar
  54. Morowitz H.J. (1968) Energy flow in biology (p. 68). New York, NY: Academic PressGoogle Scholar
  55. Nicolis, G., & Prigogine, I. (1977). Self-organisation in non-equilibrium systems (p. 24). New York, NY: Wiley.Google Scholar
  56. Mumford D. (1992) On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biological Cybernetics 66: 241–251CrossRefGoogle Scholar
  57. Murphy P.C., Sillito A.M. (1987). Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature 329: 727–729CrossRefGoogle Scholar
  58. Murray S.O., Kersten D., Olshausen B.A., Schrater P., Woods D.L. (2002) Shape perception reduces activity in human primary visual cortex. Proceedings of the National Academy of Sciences USA 99: 15164–15169CrossRefGoogle Scholar
  59. Näätänen R. (2003) Mismatch negativity: Clinical research and possible applications. International Journal of Psychophysiology 48: 179–188CrossRefGoogle Scholar
  60. Neal R.M., Hinton G.E. (1998) A view of the EM algorithm that justifies incremental sparse and other variants. In: Jordan M.I. (eds). Learning in graphical models. Kluwer Academic Press, DordrechtGoogle Scholar
  61. Neisser U. (1967) Cognitive psychology. Appleton-Century-Crofts, New YorkGoogle Scholar
  62. Nicolis, G., & Prigogine, I. (1977). Self-organisation in non-equilibrium systems (p. 24). New York, NY: Wiley.Google Scholar
  63. Oja E. (1989) Neural networks, principal components, and subspaces. International Journal of Neural Systems 1: 61–68CrossRefGoogle Scholar
  64. Olshausen B.A., Field D.J. (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381: 607–609CrossRefGoogle Scholar
  65. Optican L., Richmond B.J. (1987) Temporal encoding of two-dimensional patterns by single units in primate inferior cortex. II Information theoretic analysis. Journal of Neurophysiology 57: 132–146Google Scholar
  66. Pack C.C., Born R.T. (2001) Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain. Nature 409: 1040–1042CrossRefGoogle Scholar
  67. Phillips W.A., Singer W. (1997) In search of common foundations for cortical computation. Behavioural and Brain Sciences 20: 57–83CrossRefGoogle Scholar
  68. Pollen D.A. (1999) On the neural correlates of visual perception. Cerebral Cortex 9: 4–19CrossRefGoogle Scholar
  69. Poggio T., Torre V., Koch C. (1985) Computational vision and regularisation theory. Nature 317: 314–319CrossRefGoogle Scholar
  70. Prince A., Smolensky P. (1997) Optimality: From neural networks to universal grammar. Science 275: 1604–1610CrossRefGoogle Scholar
  71. Rao R.P., Ballard D.H. (1998) Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive field effects. Nature Neuroscience 2: 79–87CrossRefGoogle Scholar
  72. Rao R.P. (2005) Bayesian inference and attentional modulation in the visual cortex. NeuroReport 16: 1843–1848CrossRefGoogle Scholar
  73. Rockland K.S., Pandya D.N. (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Research 179: 3–20CrossRefGoogle Scholar
  74. Rosier A.M., Arckens L., Orban G.A., Vandesande F. (1993) Laminar distribution of NMDA receptors in cat and monkey visual cortex visualized by [3H]-MK-801 binding. Journal of Comparative Neurology 335: 369–380CrossRefGoogle Scholar
  75. Sherman, S. M., & Guillery, R. W. (1998). On the actions that one nerve cell can have on another: Distinguishing “drivers” from “modulators”. Proceedings of the National Academy of Sciences USA, 95, 7121–7126.Google Scholar
  76. Schroeder C.E., Mehta A.D., Foxe J.J. (2001) Determinants and mechanisms of attentional modulation of neural processing. Front Bioscience 6: D672–D684CrossRefGoogle Scholar
  77. Simoncelli E.P., Olshausen B.A. (2001) Natural image statistics and neural representation. Annual Review of Neuroscience 24: 1193–1216CrossRefGoogle Scholar
  78. Stephan K.E., Kamper L., Bozkurt A., Burns G.A.P.C., Young M.P., Kötter R. (2001) Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Philosophical Transactions of the Royal Society London B: Biological Sciences 356: 1159–1186CrossRefGoogle Scholar
  79. Streater R.F. (1993) The free-energy theorem. In; Araki H., Ito K.R., Kishimoto A., Ojima I. (eds). Quantum and non-commutative analysis. Kluwer Press, Dordrecht, pp. 137–147Google Scholar
  80. Treue S., Maunsell H.R. (1996) Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382: 539–541CrossRefGoogle Scholar
  81. Yu A.J., Dayan P. (2005) Uncertainty, neuromodulation and attention. Neuron 46: 681–692CrossRefGoogle Scholar
  82. Zeki S., Shipp S. (1988) The functional logic of cortical connections. Nature 335: 311–317CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Wellcome Trust Centre for Neuroimaging, Institute of NeurologyUniversity College LondonLondonUK

Personalised recommendations