Synthese

, Volume 165, Issue 1, pp 53–75 | Cite as

Reductive levels and multi-scale structure

Article

Abstract

I discuss arguments about the relationship between different “levels” of explanation in the light of examples involving multi-scale analysis. I focus on arguments about causal competition between properties at different levels, such as Jaegwon Kim’s “supervenience argument.” A central feature of Kim’s argument is that higher-level properties can in general be identified with “micro-based” properties. I argue that explanations from multi-scale analysis give examples of explanations that are problematic for accounts such as Kim’s. I argue that these difficulties suggest that some standard assumptions about causal competition need to be revised.

Keywords

Levels Reduction Multi-scale models Composition Physicalism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, L. R. (1993). Metaphysics and mental causation. In J. Heil & A. Mele (Eds.), Mental causation. Oxford: Clarendon.Google Scholar
  2. Batterman R.W. (1995). Theories between theories. Synthese 103, 171–201CrossRefGoogle Scholar
  3. Block N. (1997). Anti-reductionism slaps back. Philosophical Perspectives 11, 107–132Google Scholar
  4. Block N. (2003). Do causal powers drain away?. Philosophy and Phenomenological Research 67, 133–150CrossRefGoogle Scholar
  5. Burge, T. (1993). Mind-body causation and explanatory practice. In J. Heil & A. Mele (Eds.), Mental causation. Oxford: Clarendon.Google Scholar
  6. Cartwright N. (1980). Do the laws of physics state the facts?. Pacific Philosophical Quarterly 61, 75–84Google Scholar
  7. Cartwright N. (1983). How the laws of physics lie. Oxford, Claredon PressGoogle Scholar
  8. Creary L. (1981). Causal explanation and the reality of natural component forces. Pacific Philosophical Quarterly 62, 148–157Google Scholar
  9. Dehmelt H. (1989). Triton,...electron...cosmon,...:An infinite regression?. Proceedings of the National Academy of Science 86, 8618–8619CrossRefGoogle Scholar
  10. Edwards D.A. (2000). An alternative example of the method of multiple scales. SIAM Review 42, 317–332CrossRefGoogle Scholar
  11. Hinch E.J. (1990). Perturbation methods. Cambridge, Cambridge University PressGoogle Scholar
  12. Holmes M. (1999). The method of multiple scales. Proceedings of Symposia in Applied Mathematics 56, 23–46Google Scholar
  13. Hornung U. (1997). Homogenization and porous media. New York, SpringerGoogle Scholar
  14. Kevorkian J., Cole J.D. (1996). Multiple scale and singular perturbation methods. New York, SpringerGoogle Scholar
  15. Kim J. (1998). Mind in a physical world. Boston, MIT PressGoogle Scholar
  16. Kim J. (1999). Supervenient properties and micro-based properties: A reply to Noordhof. Proceedings of the Aristotelian Society 99, 115–118CrossRefGoogle Scholar
  17. Kim J. (2002). The layered model: Metaphysical considerations. Philosophical Explorations 5, 2–20CrossRefGoogle Scholar
  18. Kim J. (2003). Blocking causal drainage and other maintenance chores with mental causation. Philosophy and Phenomenological Research 67, 151–176CrossRefGoogle Scholar
  19. Kim J. (2005). Physicalism, or something near enough. Princeton, Princeton University PressGoogle Scholar
  20. Lange M. (1994). Scientific realism and components: The case of classical astronomy. The Monist 77, 111–127Google Scholar
  21. Liston M. (1993). Taking mathematical fictions seriously. Synthese 95, 433–458CrossRefGoogle Scholar
  22. Majda A., Klein R. (2003). Systematic multi-scale models for the tropics. Journal of the Atmospheric Sciences 60, 357–372Google Scholar
  23. McMullin E. (1978). Structural explanation. American Philosophical Quarterly 15, 139–147Google Scholar
  24. Merricks T. (1995). Review of Supervenience and Mind. Philosophical Books 36, 156–164CrossRefGoogle Scholar
  25. Nayfeh A. (1973). Perturbation methods. New York, WileyGoogle Scholar
  26. Nickles T. (1973). Two concepts of intertheoretic reduction. The Journal of Philosophy 70, 181–201CrossRefGoogle Scholar
  27. Noordhof P. (1999). Micro-based properties and the supervenience argument: A response to Kim. Proceedings of the Aristotelian Society 99, 109–114CrossRefGoogle Scholar
  28. Oppenheim, P., & Putnam, H. (1958). Unity of science as a working hypothesis. In H. Feigl, M. Scriven, & G. Maxwell (Eds.), Minnesota studies in the Philosophy of science. Minneapolis: University of Minnesota Press.Google Scholar
  29. Rueger A. (2004). Reduction, autonomy, and causal exclusion among physical properties. Synthese 139, 1–21CrossRefGoogle Scholar
  30. Scerri, E. (1994). Has chemistry been at least approximately reduced to quantum mechanics? In: Proceedings of the Biennial Meetings of the Philosophy of Science Association (Vol. 1, pp. 160–170).Google Scholar
  31. Sheldon N.A. (1985). One wave or three? A problem for realism. British Journal for the Philosophy of Science 36, 431–436CrossRefGoogle Scholar
  32. Sturgeon S. (1998). Physicalism and overdetermination. Mind 107, 411–432CrossRefGoogle Scholar
  33. Teller P. (1995). An interpretive introduction to quantum field theory. Princeton, New Jersey, Princeton University PressGoogle Scholar
  34. Van Dyke M. (1975). Perturbation methods in fluid mechanics, Stanford, California, The Parabolic PressGoogle Scholar
  35. Van Gulick R. (1992). Three bad arguments for intentional property epiphenomenalism. Erkenntnis 36, 311–332CrossRefGoogle Scholar
  36. Volland H. (1988). Atmospheric tidal and planetary waves. Dordrecht, Kluwer Academic PublishersGoogle Scholar
  37. Yablo S. (1992). Cause and essence. Synthese 93, 403–449CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of AlbertaEdmontonCanada

Personalised recommendations