Advertisement

Synthese

, Volume 161, Issue 2, pp 167–182 | Cite as

Equivalent testimonies as a touchstone of coherence measures

  • Mark Siebel
  • Werner Wolff
Original Article

Abstract

Over the past years, a number of probabilistic measures of coherence have been proposed. As shown in the paper, however, many of them do not conform to the intuitition that equivalent testimonies are highly coherent, regardless of their prior probability.

Keywords

Probabilistic measures of coherence Equivalent testimonies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartelborth T. (1996). Begründungsstrategien. Ein Weg durch die analytische Erkenntnistheorie. Akademie-Verlag, BerlinGoogle Scholar
  2. Bovens L., Hartmann S. (2003a). Solving the riddle of coherence. Mind 112, 601–633CrossRefGoogle Scholar
  3. Bovens L., Hartmann S. (2003b). Bayesian epistemology. Oxford University Press, New York and OxfordGoogle Scholar
  4. Bovens L., Olsson E.J. (2000). Coherentism, reliability and Bayesian networks. Mind 109, 685–719CrossRefGoogle Scholar
  5. Bovens L., Olsson E.J. (2002). Believing more, risking less: On coherence, truth and non-trivial extensions. Erkenntnis 57, 137–150CrossRefGoogle Scholar
  6. Carnap R. (1950). Logical foundations of probability. University of Chicago Press, ChicagoGoogle Scholar
  7. Christensen D. (1999). Measuring confirmation. The Journal of Philosophy 96, 437–461CrossRefGoogle Scholar
  8. Douven, I., & Meijs, W. (2007). Measuring coherence. Synthese (Forthcoming), DOI: 10.1007/s11229-006-9131-z.Google Scholar
  9. Eells E., Fitelson B. (2002). Symmetries and asymmetries in evidential support. Philosophical Studies 107, 129–142CrossRefGoogle Scholar
  10. Finch H.A. (1960). Confirming power of observations metricized for decisions among hypotheses. Philosophy of Science 27, 293–307CrossRefGoogle Scholar
  11. Fitelson B. (1999). The plurality of Bayesian measures of confirmation and the problem of measure sensitivity. Philosophy of Science, 66 (Proceedings), S362–S378CrossRefGoogle Scholar
  12. Fitelson, B. (2001). Studies in Bayesian confirmation theory. Ph.D. thesis, University of Wisconsin at Madison. Online: http://fitelson.org/thesis.pdf.Google Scholar
  13. Fitelson B. (2003). A probabilistic theory of coherence. Analysis 63, 194–199CrossRefGoogle Scholar
  14. Fitelson, B. (2004). Two technical corrections to my coherence measure. Online: http://fitelson.org/ coherence2.pdf.Google Scholar
  15. Gillies D. (1986). In defense of the Popper-Miller argument. Philosophy of Science 53, 110–113CrossRefGoogle Scholar
  16. Good I.J. (1984). The best explicatum for weight of evidence. Journal of Statistical Computation and Simulation 19, 294–299CrossRefGoogle Scholar
  17. Horwich, P. (1998). Wittgensteinian Bayesianism. In: Curd M., Cover J.A. (eds). Philosophy of science: The central issues. Norton, New York and London, pp. 607–624Google Scholar
  18. Jeffrey R. (1992). Probability and the art of judgement. Cambridge University Press, CambridgeGoogle Scholar
  19. Kemeny J., Oppenheim P. (1952). Degrees of factual support. Philosophy of Science 19, 307–324CrossRefGoogle Scholar
  20. Klein P., Warfield T.A. (1994). What price coherence? Analysis 54, 129–132CrossRefGoogle Scholar
  21. Kyburg H.E., Jr. (1983). Recent work in inductive logic. In: Machan T., Lucey K. (eds). Recent work in philosophy. Rowman & Allanheld, Totowa/NJ, pp. 87–150Google Scholar
  22. Levi I. (1962). Corroboration and rules of acceptance. British Journal for the Philosophy of Science 13, 307–313Google Scholar
  23. Lewis, C. I. (1946). An analysis of knowledge and valuation. Chicago: Open Court.Google Scholar
  24. Milne P. (1996). log[p(h/eb)/p(h/b)] is the one true measure of confirmation. Philosophy of Science 63, 21–26CrossRefGoogle Scholar
  25. Moretti L., Akiba K. (2007). Probabilistic measures of coherence and the problem of belief individuation. Synthese 154, 73–95CrossRefGoogle Scholar
  26. Nozick R. (1981). Philosophical explanations. Harvard University Press, Cambridge/MAGoogle Scholar
  27. Olsson E.J. (2002). What is the problem of coherence and truth?. The Journal of Philosophy 94, 246–272Google Scholar
  28. Olsson E.J. (2005). Against coherence. Oxford University Press, OxfordGoogle Scholar
  29. Olsson E.J., Shogenji T. (2004). Can we trust our memories? C. I. Lewis’s coherence argument. Synthese 142, 21–41CrossRefGoogle Scholar
  30. Popper K.R. (1954). Degree of confirmation. British Journal for the Philosophy of Science 5, 143–149CrossRefGoogle Scholar
  31. Rescher N. (1958). Theory of evidence. Philosophy of Science 25, 83–94CrossRefGoogle Scholar
  32. Rosenkrantz R. (1994). Bayesian confirmation: Paradise regained. British Journal for the Philosophy of Science 45, 467–476CrossRefGoogle Scholar
  33. Schlesinger G. (1995). Measuring degrees of confirmation. Analysis 55, 208–212CrossRefGoogle Scholar
  34. Shogenji T. (1999). Is coherence truth conducive? Analysis 59, 338–345CrossRefGoogle Scholar
  35. Siebel M. (2005a). Against probabilistic measures of coherence. Erkenntnis 63, 335–360CrossRefGoogle Scholar
  36. Siebel, M. (2005b). Thagard’s measure of coherence: Corrected and compared with probabilistic accounts. Manuscript.Google Scholar
  37. Thagard P. (1992). Conceptual revolutions. Princeton University Press, PrincetonGoogle Scholar
  38. Thagard P., Verbeurgt K. (1998). Coherence as constraint satisfaction. Cognitive Science 22, 1–24CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Philosophisches SeminarUniversität HamburgHamburgGermany
  2. 2.Institut für Logik und Wissenschaftstheorie, Universität LeipzigLeipzigGermany

Personalised recommendations