Synthese

, Volume 153, Issue 3, pp 343–353 | Cite as

Computational explanation in neuroscience

Original Paper

Abstract

According to some philosophers, computational explanation is proprietary to psychology—it does not belong in neuroscience. But neuroscientists routinely offer computational explanations of cognitive phenomena. In fact, computational explanation was initially imported from computability theory into the science of mind by neuroscientists, who justified this move on neurophysiological grounds. Establishing the legitimacy and importance of computational explanation in neuroscience is one thing; shedding light on it is another. I raise some philosophical questions pertaining to computational explanation and outline some promising answers that are being developed by a number of authors.

Keywords

Computational explanation Mechanistic explanation Computational neuroscience Cognitive neuroscience Theoretical neuroscience Computationalism Pancomputationalism Computational theory of mind Models Representation Introspection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian E.D. (1928). The basis of sensation: The action of the sense organs. Norton, New YorkGoogle Scholar
  2. Anderson J.A., Pellionisz A., Rosenfeld E. (1990). Neurocomputing 2: Directions for research. MIT Press, Cambridge, MAGoogle Scholar
  3. Anderson J.A., Rosenfeld E. Ed. (1988). Neurocomputing: Foundations of research. MIT Press, Cambridge, MAGoogle Scholar
  4. Anderson J.A., Rosenfeld E. Ed. (1998). Talking nets: An oral history of neural networks. MIT Press, Cambridge, MAGoogle Scholar
  5. Bechtel, W. (2001). Cognitive neuroscience: Relating neural mechanisms and cognition. In P. Machamer, R. Grush, & P. McLaughlin (Eds.), Theory and method in the neurosciences (pp. 81–111). University of Pittsburgh Press.Google Scholar
  6. Boden, M. (1991). Horses of a different color? In W. Ramsey et al. (Eds.), Philosophy and connectionist theory (pp. 3–19). Hillsdale: LEA.Google Scholar
  7. Burge T. (1986). Individualism and psychology. Philosophical Review 95, 3–45CrossRefGoogle Scholar
  8. Chalmers D.J. (1996a). Does a rock implement every finite-state automaton? Synthese 108, 310–333CrossRefGoogle Scholar
  9. Chalmers D.J. (1996b). The conscious mind: In search of a fundamental theory. Oxford University Press, OxfordGoogle Scholar
  10. Churchland P.S. (1986). Neurophilosophy. MIT Press, Cambridge, MAGoogle Scholar
  11. Churchland P.S., Koch H., Sejnowski T. (1990). What is computational neuroscience?. In: Schwartz E.L. (eds). Computational neuroscience. MIT Press, Cambridge, MA, pp. 46–55Google Scholar
  12. Churchland P.S., Sejnowski T.J. (1992). The computational brain. MIT Press, Cambridge, MAGoogle Scholar
  13. Copeland B.J. (1996). What is computation?. Synthese 108, 224–359Google Scholar
  14. Copeland B.J. (2000). Narrow Versus Wide Mechanism: Including a Re-Examination of Turing’s Views on the Mind-Machine Issue. The Journal of Philosophy XCVI, 5–32CrossRefGoogle Scholar
  15. Crane T. (1990). The language of thought: No syntax without semantics. Mind and Language 5(3): 187–212Google Scholar
  16. Craver, C. F. (forthcoming). Explaining the brain. Oxford: Oxford University Press.Google Scholar
  17. Cruse, H. (2001). The explanatory power and limits of simulation models in the neurosciences. In P. , R. Grush, & P. McLaughlin (Eds.), Theory and method in the neurosciences (pp. 138–154). University of Pittsburgh Press.Google Scholar
  18. Dayan P., Abbott L.F. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems. MIT Press, Cambridge, MAGoogle Scholar
  19. Dennett D.C. (1991). Consciousness explained. Little, Brown & Co., BostonGoogle Scholar
  20. Dennett D.C. (2003). Who’s on first? Heterophenomenology explained. Journal of Consciousness Studies 10(9–10): 19–30Google Scholar
  21. Edelman G.M. (1992). Bright air, brilliant fire: On the matter of the mind. Basic Books, New YorkGoogle Scholar
  22. Egan F. (1995). Computation and content. Philosophical Review 104, 181–203CrossRefGoogle Scholar
  23. Ericsson K.A. (2003). How to elicit verbal reports that provide valid unobtrusive externalization of concurrent thinking? Journal of Consciousness Studies 10, 9–10Google Scholar
  24. Ericsson K.A., Simon H.A. (1993). Protocol analysis. MIT Press, Cambridge, MAGoogle Scholar
  25. Feest U. (2003). Functional analysis and the autonomy of psychology. Philosophy of Science 70, 937–948CrossRefGoogle Scholar
  26. Fodor J.A. (1975). The language of thought. Harvard University Press, Cambridge, MAGoogle Scholar
  27. Fodor, J. A. (1981). The mind–body problem. Scientific American, 244. In J. Heil (Ed.), Philosophy of mind: A guide and anthology (pp. 168–182). Oxford: Oxford University Press (Reprinted 2004).Google Scholar
  28. Fodor J.A. (1998). Concepts. Clarendon Press, OxfordGoogle Scholar
  29. Frank R.G. (1994). Instruments, nerve action, and the all-or-none principle. Osiris 9, 208–235CrossRefGoogle Scholar
  30. Freeman W.J. (2001). How brains make up their minds. Columbia Press, New YorkGoogle Scholar
  31. Gallistel C.R. (1990). The organization of learning. MIT Press, Cambridge, MAGoogle Scholar
  32. Gazzaniga M.S. Ed. (2000). The new cognitive neurosciences. MIT Press, Cambridge, MAGoogle Scholar
  33. Gerard, R. W., & Duyff, J. W. (Eds.). (1962) Information processing in the nervous system: Volume III of the international union of physiological sciences (XXII International Congress, Leiden, 1962). Amsterdam: Excerpta Medica Foundation.Google Scholar
  34. Globus G.G. (1992). Towards a noncomputational cognitive neuroscience. Journal of Cognitive Neuroscience 4(4): 299–310CrossRefGoogle Scholar
  35. Goldman A.I. (1997). Science, publicity, and consciousness. Philosophy of Science 64, 525–545CrossRefGoogle Scholar
  36. Grush, R. (2001). The semantic challenge to computational neuroscience. In P. Machamer, R. Grush, & P. McLaughlin (Eds.), Theory and method in the neurosciences (pp. 155–172). University of Pittsburgh Press.Google Scholar
  37. Grush R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences 27, 377–442CrossRefGoogle Scholar
  38. Jeffress L.A. Ed. (1951). Cerebral mechanisms in behavior. Wiley, New YorkGoogle Scholar
  39. Johnson-Laird P.N. (1983). Mental models: Towards a cognitive science of language, inference and consciousness. Cambridge University Press, New YorkGoogle Scholar
  40. Keeley B. (2000). Shocking lessons from electric fish: The theory and practice of multiple realizability. Philosophy of Science 67, 444–465CrossRefGoogle Scholar
  41. Lloyd D. (2002). Functional MRI and the study of human consciousness. Journal of Cognitive Neuroscience 14, 818–831CrossRefGoogle Scholar
  42. Lycan W. (1987). Consciousness. MIT Press, Cambridge, MAGoogle Scholar
  43. Machtey, M., & Young, P. (1978). An introduction to the general theory of algorithms. New York: North Holland.Google Scholar
  44. McClelland J.L., Patterson K. (2002). Rules or connections in past-tense inflections: What does the evidence rule out? Trends in Cognitive Science 6, 465–472CrossRefGoogle Scholar
  45. McCulloch W.S. (1949). The brain as a computing machine. Electrical Engineering 68, 492–497Google Scholar
  46. McCulloch W.S., Pitts W.H. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 7, 115–133CrossRefGoogle Scholar
  47. Miller G.A., Galanter E.H., Pribram K.H. (1960). Plans and the structure of behavior. Holt, New YorkGoogle Scholar
  48. Newell A. (1990). Unified theories of cognition. Harvard University Press, Cambridge, MAGoogle Scholar
  49. Newell A., Simon H.A. (1972). Human problem solving. Prentice-Hall, Englewood CliffsGoogle Scholar
  50. Newell A., Simon H.A. (1976). Computer science as an empirical enquiry: and search. Communications of the ACM 19, 113–126CrossRefGoogle Scholar
  51. Peacocke C. (1999). Computation as involving content: A response to Egan. Mind and Language 14(2): 195–202CrossRefGoogle Scholar
  52. Perkel D.H. (1990). Computational neuroscience: Scope and structure. In: Schwartz E.L. (eds). Computational neuroscience. MIT Press, Cambrdige, MA, pp. 38–45Google Scholar
  53. Piccinini G. (2003). Data from introspective reports: Upgrading from commonsense to science. Journal of Consciousness Studies 10(9–10): 141–156Google Scholar
  54. Piccinini G. (2004). The First computational theory of mind and brain: A close look at McCulloch and Pitts’s ‘logical calculus of ideas immanent in nervous activity’. Synthese 141(2): 175–215CrossRefGoogle Scholar
  55. Piccinini, G. (forthcoming a). Computationalism, the Church–Turing Thesis, and the Church–Turing Fallacy. Synthese.Google Scholar
  56. Piccinini, G. (forthcoming b). Computational modeling vs. computational explanation: Is everything a Turing machine, and does it matter to the philosophy of mind? Australasian Journal of Philosophy.Google Scholar
  57. Piccinini, G. (forthcoming c). Computational explanation and mechanistic explanation of mind. In M. De Caro, F. Ferretti, & M. Marraffa (Eds.), Cartographies of the mind: The interface between philosophy and cognitive science. Dordrecth: Kluwer.Google Scholar
  58. Piccinini, G. (forthcoming d). Computation without representation. Philosophical Studies.Google Scholar
  59. Pinker S., Ullman M. (2002). The past-tense debate: The past and future of the past tense. Trends in Cognitive Science 6, 456–463CrossRefGoogle Scholar
  60. Pylyshyn Z.W. (1984). Computation and cognition. MIT Press, Cambridge, MAGoogle Scholar
  61. Revonsuo, A. (2001). On the nature of explanation in the neurosciences. In P. Machamer, R. Grush, & P. McLaughlin (Eds.), 2001, Theory and method in the neurosciences (pp. 45–69). University of Pittsburgh Press.Google Scholar
  62. Rumelhart D.E., McClelland J.M., and the PDP Research Group (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge, MA: MIT Press.Google Scholar
  63. Searle J.R. (1992). The rediscovery of the mind. MIT Press, Cambridge, MAGoogle Scholar
  64. Shagrir O. (2001). Content, computation and externalism. Mind 110(438): 369–400CrossRefGoogle Scholar
  65. Smith B.C. (2002). The foundations of computing. In: Scheutz M. (eds). Computationalism: New directions. MIT Press, Cambridge, MA, pp. 23–58Google Scholar
  66. Stich S. (1983). From folk psychology to cognitive science. MIT Press, CambridgeGoogle Scholar
  67. Thomson E., Lutz A., Cosmelli D. (2005). Neurophenomenology: An introduction for neurophilosophers. In: Brook A., Akins K. (eds). Cognition and the brain: The philosophy and neuroscience movement. Cambridge University Press, New York, pp. 40–97Google Scholar
  68. Varela F. (1996). Neurophenomenology: A methodological remedy for the hard problem. Journal of Consciousness Studies 3(4): 330–349Google Scholar
  69. Wolfram S. (2002). A new kind of science. Wolfram Media, Champaign, ILGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of Missouri—St. LouisSt. LouisUSA

Personalised recommendations