, Volume 146, Issue 1–2, pp 37–51 | Cite as

Non-Monotonic Reasoning from an Evolution-Theoretic Perspective: Ontic, Logical and Cognitive Foundations

  • Gerhard Schurz


In the first part I argue that normic laws are the phenomenological laws of evolutionary systems. If this is true, then intuitive human reasoning should be fit in reasoning from normic laws. In the second part I show that system P is a tool for reasoning with normic laws which satisfies two important evolutionary standards: it is probabilistically reliable, and it has rules of low complexity. In the third part I finally report results of an experimental study which demonstrate that intuitive human reasoning is in well accord with basic argument patterns of system P.


Experimental Study Evolutionary System Human Reasoning Basic Argument Evolutionary Standard 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, E.W. 1975The Logic of ConditionalsReidelDordrechtGoogle Scholar
  2. Adams, E.W. 1986‘On the Logic of High Probability’Journal of Philosophical Logic15255279CrossRefGoogle Scholar
  3. Adams, E.W. 2005‘On a Proportionality Analysis of Syllogistic Reasoning’Synthese146129138CrossRefGoogle Scholar
  4. Bourne R., Parsons S. (1998). ’Propagating Probabilities in System P’. Proceedings of the 11th International FLAIRS Conference, pp. 440–445Google Scholar
  5. Ford, M., Billington, D. 2000‘Strategies in Human Nonmonotonic Reasoning’Computational Intelligence16446467CrossRefGoogle Scholar
  6. Frisch, A.M., Haddaway, P. 1994‘Anytime Deduction for Probabilistic Logic’Artificial Intelligence6993122CrossRefGoogle Scholar
  7. Gilio, A. 2002‘Probabilistic Reasoning under Coherence in System P’Annals of Mathematics and Artificial Intelligence34534CrossRefGoogle Scholar
  8. Gilio, A. 2005‘Probabilistic Logic under Coherence, Conditional Interpretations, and Default Reasoning’Synthese146139152CrossRefGoogle Scholar
  9. Grice P. (1975). ’Logic and Conversation’. In: Cole P., Morgan J. (ed). Syntax and Semantics, Vol.3, NewYorkGoogle Scholar
  10. Leitgeb, H. 2001‘Nonmonotonic Reasoning by Inhibition Nets’Artificial Intelligence42263309Google Scholar
  11. Lukasiewicz, T. 1999‘Probabilistic Deduction with Conditional Constraints over Basic Events’Journal of Artificial Intelligence Research10199241Google Scholar
  12. McCarthy, J. 1986‘Application of Circumscription to Formalizing Common-Sense Knowledge’Artificial Intelligence1389116Google Scholar
  13. Millikan, R.G. 1984Language, Thought, and Other Biological CategoriesMIT PressCambridge, MAGoogle Scholar
  14. Moore, R.C. 1985‘Semantical Considerations on Nonmonotonic Logic’Artificial Intelligence257594CrossRefGoogle Scholar
  15. Pelletier, F.J., Elio, R.,  et al. 2002’Logic and Cognition: Human Performance in Default Reasoning’Gärdenfors, P. eds. In the Scope of Logic, Methodology and Philosophy of Science.KluwerDordrechtGoogle Scholar
  16. Pelletier, F.J., Elio, R. 2005‘The Case for Psychologism in Default and Inheritance Reasoning’Synthese146735CrossRefGoogle Scholar
  17. Poole, D. 1988‘A Logical Framework for Default Reasoning’Artificial Intelligence362747CrossRefGoogle Scholar
  18. Reiter, R. 1980‘A Logic for Default Reasoning’Artificial Intelligence1381132CrossRefGoogle Scholar
  19. Reiter R. (1987). ’Non-monotonic Reasoning’. Annual Review of Computer Science,Vol 2. Palo Alto, CA, pp. 147–186Google Scholar
  20. Schurz G. (1994). ’Probabilistic Justification of Default Reasoning’. In: B. Nebel L., Dreschler-Fischer L. (ed). KI-94: Advances in Artificial Intelligence. Springer, Berlin, pp. 248–259Google Scholar
  21. Schurz, G.,  et al. 1997’Probabilistic Default Reasoning Based on Relevance-and Irrelevance Assumptions’Gabbay, D. eds. Qualitative and Quantitative Practical Reasoning.SpringerBerlin536553Google Scholar
  22. Schurz, G. 1998‘Probabilistic Semantics for Delgrande’s Conditional Logic and a Counterexample to his Default Logic’Artificial Intelligence1028195CrossRefGoogle Scholar
  23. Schurz, G. 2001‘What Is “Normal”? An Evolution-Theoretic Foundation of Normic Laws and Their Relation to Statistical Normality’Philosophy of Science28476497Google Scholar
  24. Schurz G. (2001b). ’Nichtmonotones Schliessen: Ergebnisse einer empirischen Untersuchung’. SFB F012 Forschungsmitteilungen 17, Universität SalzburgGoogle Scholar
  25. Schurz G. (2002). ’Ceteris Paribus Laws: Classification and Deconstruction’. In: Earman J., Glymour C., Mitchel S. (ed). Ceteris Paribus Laws, Erkenntnis, 57(3). 351–372Google Scholar
  26. Scriven, M. 1959’Truisms as Grounds for Historical Explanations’Gardiner, P. eds. Theories of History.The Free PressNew YorkGoogle Scholar
  27. Sperber, D., Wilson, D. 1986RelevanceCommunication and Cognition. BlackwellOxfordGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Chair of Theoretical Philosophy, Department of PhilosophyUniversity of DüsseldorfDüsseldorfGermany

Personalised recommendations