Advertisement

Synthese

, Volume 152, Issue 2, pp 207–236 | Cite as

A Bayesian Approach to Informal Argument Fallacies

  • Ulrike Hahn
  • Mike Oaksford
Article

Abstract

We examine in detail three classic reasoning fallacies, that is, supposedly ``incorrect'' forms of argument. These are the so-called argumentam ad ignorantiam, the circular argument or petitio principii, and the slippery slope argument. In each case, the argument type is shown to match structurally arguments which are widely accepted. This suggests that it is not the form of the arguments as such that is problematic but rather something about the content of those examples with which they are typically justified. This leads to a Bayesian reanalysis of these classic argument forms and a reformulation of the conditions under which they do or do not constitute legitimate forms of argumentation.

Keywords

BAYESIAN Approach Prior Belief Slippery Slope Negative Evidence Argumentative Discourse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexy R. (1989). A Theory of Legal Argumentation. Clarendon Press, OxfordGoogle Scholar
  2. Bench-Capon T. J. M. (2003). `Persuasion in Practical Argument Using Value-Based Argumentation Frameworks'. Journal of Logic and Computation 13: 429–448CrossRefGoogle Scholar
  3. Bowell T. and Kemp G. (2002). Critical Thinking: A Concise Guide. Routledge, LondonGoogle Scholar
  4. Brown H. (1993). `A Theory-Laden Observation can Test a Theory'. British Journal for the Philosophy of Science 44: 555–559Google Scholar
  5. Brown H. (1994). `Circular Justifications'. PSA 1: 406–414Google Scholar
  6. Burg W. (1991). `The Slippery Slope Argument', Ethics 42: 42Google Scholar
  7. Cherniak C. (1986). Minimal Rationality. MIT Press, Cambridge, MAGoogle Scholar
  8. Clark K. L. (1978). `Negation as Failure'. In H. Gallaire and J. Minker (eds.) Logic and Databases, Plenum Press, New York, pp. 293–322Google Scholar
  9. Copi I. M. and Cohen C. (1990). Introduction to Logic (8th ed.). Macmillan Press, New YorkGoogle Scholar
  10. De Cornulier B. (1988). `Knowing Whether. Knowing Who and Epistemic Closure', in M. Meyer (ed.) Questions and Questioning, Walter de Gruyter, Berlin, pp. 182–192Google Scholar
  11. Earman J. (1992). Bayes or Bust? MIT Press. Cambridge, MAGoogle Scholar
  12. Grootendorst R. and Eemeren F. H. (1984). Speech Acts in Argumentative Discussions. A Theoretical Model for the Analysis of Discussions Directed Towards Solving Conflicts of Opinion. De Gruyter, BerlinGoogle Scholar
  13. Grootendorst R. and Eemeren F. H. (1992). Argumentation. Communication and Fallacies, Lawrence Erlbaum, Hillsdale, NJGoogle Scholar
  14. Grootendorst R. and Eemeren F. H. (2004). A Systematic Theory of Argumentation. The Pragma-Dialectical Approach. Cambridge University Press, CambridgeGoogle Scholar
  15. Fox J. (2003). `Probability, Logic and the Cognitive Foundations of Rational Belief'. Journal of Applied Logic 1: 197–224CrossRefGoogle Scholar
  16. Fox J. and Parsons S. (1998). `Arguing about Beliefs and Actions'. In: Hunter, A. and Parsons, S. (eds) Applications of Uncertainty Formalisms (Lecture Notes in Artificial Intelligence 1455), pp 266–302. Springer Verlag, BerlinGoogle Scholar
  17. Gabbay D. (1996). Labelled Deduction Systems. Oxford University Press, OxfordGoogle Scholar
  18. Geiger, D. and Shenoy, P. P. (eds.) 1997, Uncertainty in Artificial Intelligence: Proceedings of the Thirteenth Conference, Morgan Kaufman, San Francisco, CA.Google Scholar
  19. Govier T. (1982). `What's Wrong with Slippery Slope Arguments'. Canadian Journal of Philosophy 12: 303–316Google Scholar
  20. Green D. M. and Swets J.A (1966). Signal Detection Theory and Psychophysics. Wiley, New YorkGoogle Scholar
  21. Hamblin C. L. (1970). Fallacies. Methuen, LondonGoogle Scholar
  22. Harman G. (1965). `The Inference to the Best Explanation'. Philosophical Review 64: 88–95CrossRefGoogle Scholar
  23. Holtug N. (1993). ‘Human gene therapy: Down the slippery slope’. Bioethics 7: 402–419Google Scholar
  24. Howson C. (2003). ‘Probability and logic’. Journal of Applied Logic 1: 151–165CrossRefGoogle Scholar
  25. Howson C. and Urbach P. (1989). Scientific Reasoning: The Bayesian Approach. Open Court, La Salle, IllinoisGoogle Scholar
  26. Ikuenobe P. (2004). `On the Theoretical Unification and Nature of the Fallacies'. Argumentation 18: 189–211CrossRefGoogle Scholar
  27. Josephson J. R. and Josephson S.G (1994). Abductive Inference: Computation. Philosophy, Technology. Cambridge University Press, Cambridge Google Scholar
  28. Kohlas J. (2003). Probabilistic Argumentation Systems: `A New Way to Combine Logic with Probability'. Journal of Applied Logic 1: 225–253CrossRefGoogle Scholar
  29. Krause P. and Clark D. (1993). Representing Uncertain Knowledge: An Artificial Intelligence Approach. Intellect Books, Oxford, UKGoogle Scholar
  30. Kuhn, D.: 1993, Connecting Scientific and Informal Reasoning, Merrill-Palmer.Google Scholar
  31. Kyburg, Jr. H. E. (2003). ‘Are there degrees of belief ?. Journal of Applied Logic 1: 139–149CrossRefGoogle Scholar
  32. Lode E. (1999). `Slippery Slope Arguments and Legal Reasoning'. California Law Review 87: 1469–1544Google Scholar
  33. McClelland J. L. and Rumelhart D.E. (1981). An Interactive Activation Model of Context Effects in Letter Perception: Part 1. An Account of Basic Findings. Psychological Review 88: 375–407CrossRefGoogle Scholar
  34. McClelland J. L. (1998). `Connectionist Models and Bayesian Inference'. in M. Oaksford and N. Chater (eds.) Rational Models of Cognition, Oxford University Press, Oxford. pp. 21–53Google Scholar
  35. McMeniman L. (1999). From Inquiry to Argument. Allyn & Bacon, Needham Heights, MassGoogle Scholar
  36. Miller D. (1994). Critical Rationalism: A Restatement and a Defence. Open Court, La Salle, ILGoogle Scholar
  37. Moshman D. and Geil M. (1998). `Collaborative Reasoning: Evidence for Collective Rationality'. Thinking and Reasoning 4: 231–248CrossRefGoogle Scholar
  38. Oaksford M. and Chater N. (1991). `Against Logicist Cognitive Science'. Mind & Language 6: 1–38Google Scholar
  39. Oaksford M. and Hahn U. (2004). `A Bayesian Approach to the Argument from Ignorance'. Canadian Journal of Experimental Psychology 58: 75–85Google Scholar
  40. Parsons S. (2000). Qualitative Methods for Reasoning Under Uncertainty. MIT Press, Cambridge, MAGoogle Scholar
  41. Pearl J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman, San Mateo, CAGoogle Scholar
  42. Pearl J. (2000). Causality. Cambridge University Press, CambridgeGoogle Scholar
  43. Perelman C. and Olbrechts-Tyteca L. (1969). The New Rhetoric: A Treatise on Argumentation. University of Notre Dame Press, Notre Dame, IndianaGoogle Scholar
  44. Pollock J. L. (2001). `Defeasible Reasoning with Variable Degrees of Justification'. Artificial Intelligence 133: 233–282CrossRefGoogle Scholar
  45. Powers L. (1995). `The One Fallacy Theory'. Informal Logic 17: 303–314Google Scholar
  46. Prakken H. and Vreeswijk G. A. W. (2002). `Logics for Defeasible Argumentation', in D. M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, 2nd edn.. Vol. 4, Kluwer Academic Publishers, Dordrecht/Boston/London: 219–318Google Scholar
  47. Prakken H., Walton D. and Reed C. (2005). `Dialogues about the Burden of Proof'. in Proceeding of the Tenth Internal Conference on Artificial Intelligence and Law, Bologna, Italy, June, Association for Computing Machinery, New York, pp. 115–124Google Scholar
  48. Ramsey F. P. (1931). The Foundations of Mathematics and Other Logical Essays. Routledge and Kegan Paul, LondonGoogle Scholar
  49. Reiter R. (1980). `A Logic for Default Reasoning'. Artificial Intelligence 13: 81–132CrossRefGoogle Scholar
  50. Reiter R. (1985). `On Reasoning by Default'. In: Brachman, R. and Levesque, H. (eds) Readings in Knowledge Representation, pp 401–410. Morgan Kaufman, Los Altos, CAGoogle Scholar
  51. Savage L. J. (1954). The Foundations of Statistics. John Wiley, New YorkGoogle Scholar
  52. Schauer F. (1985). `Slippery Slopes'. Harvard Law Review 99: 361–383Google Scholar
  53. Shogenji T. (2000). `Self-dependent Justification Without Circularity'. British Journal for the Philosophy of Science 51: 287–298CrossRefGoogle Scholar
  54. Sober E. (2002). `Bayesianism: Its Scope and Limits'. in R. Swinburne (ed.), Bayes Theorem, Oxford University Press, OxfordGoogle Scholar
  55. Surowiecki J. (2004). The Wisdom of Crowds. Doubleday, New YorkGoogle Scholar
  56. Volokh E. (2003). `The Mechanisms of the Slippery Slope'. Harvard Law Review 116: 1026–1137Google Scholar
  57. Walton D. N. (1985). `Are Circular Arguments Necessarily Vicious?'. American Philosophical Quarterly 22: 263–274Google Scholar
  58. Walton D. N. (1989). Informal Logic. Cambridge University Press, Cambridge, UKGoogle Scholar
  59. Walton D. N. (1991). Begging the Question: Circular Reasoning as a Tactic in Argumentation. Greenwood Press, New YorkGoogle Scholar
  60. Walton D. N. (1992). `Nonfallacious Arguments from Ignorance'. American Philosophical Quarterly 29: 381–387Google Scholar
  61. Walton, D. N.: 1992b, Slippery Slope Arguments, Oxford University Press.Google Scholar
  62. Walton D.N. (1995). A Pragmatic Theory of Fallacy. The University of Alabama Press, Tuscaloosa/LondonGoogle Scholar
  63. Walton D. N. (1996). Arguments from Ignorance. Pennsylvania State University Press, Philadelphia, PAGoogle Scholar
  64. Walton D.N. (1998). The New Dialectic: Conversational Contexts of Argument. University of Toronto Press, TorontoGoogle Scholar
  65. Williams B. (1985). `Which Slopes are Slippery?', in M. Lockwood. ed., Moral Dilemmas in Modern Medicine, Oxford University Press, Oxford. pp. 126–137Google Scholar
  66. Woods J., Irvine A. and Walton D.N (2004). Argument: Critical Thinking. Logic and the Fallacies, Revised edn., Prentice Hall, TorontoGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.School of PsychologyCardiff UniversityCardiff, WalesUnited Kingdom
  2. 2.School of PsychologyBirkbeck College LondonLondonUnited Kingdom

Personalised recommendations