Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Prolegomena to Dynamic Logic for Belief Revision

  • 195 Accesses

  • 70 Citations


In ‘belief revision’ a theory\({\cal K}\) is revised with a formula φ resulting in a revised theory \({\cal K}\ast\varphi\). Typically, \(\neg\varphi\) is in \({\cal K}\), one has to give up belief in \(\neg\varphi\) by a process of retraction, and φ is in \({\cal K}\ast\varphi\). We propose to model belief revision in a dynamic epistemic logic. In this setting, we typically have an information state (pointed Kripke model) for the theory \({\cal K}\) wherein the agent believes the negation of the revision formula, i.e., wherein \(B\neg\varphi\) is true. The revision with φ is a program *φ that transforms this information state into a new information state. The transformation is described by a dynamic modal operator [*φ], that is interpreted as a binary relation [ [*φ] ] between information states. The next information state is computed from the current information state and the belief revision formula. If the revision is successful, the agent believes φ in the resulting state, i.e., Bφ is then true. To make this work, as information states we propose ‘doxastic epistemic models’ that represent both knowledge and degrees of belief. These are multi-modal and multi-agent Kripke models. They are constructed from preference relations for agents, and they satisfy various characterizable multi-agent frame properties. Iterated, revocable, and higher-order belief revision are all quite natural in this setting. We present, for an example, five different ways of such dynamic belief revision. One can also see that as a non-deterministic epistemic action with two alternatives, where one is preferred over the other, and there is a natural generalization to general epistemic actions with preferences.

This is a preview of subscription content, log in to check access.


  1. C. Alchourrón P. Gärdenfors D. Makinson (1985) ArticleTitleOn the Logic of Theory Change: Partial Meet Contraction and Revision Functions Journal of Symbolic Logic 50 510–530

  2. G. Asheim Y. Søvik (2005) ArticleTitlePreference-Based Belief Operators Mathematical Social Sciences 50 IssueID1 61–82

  3. Aucher, G.: 2003, ‘A Combined System for Update Logic and Belief Revision’, Master’s thesis, ILLC, University of Amsterdam, Amsterdam, the Netherlands

  4. Aucher, G.: 2005a, ‘A Combined System for Update Logic and Belief Revision’. In M. Barley and N. Kasabov (eds.), Intelligent Agents and Multi-Agent Systems – 7th Pacific Rim International Workshop on Multi-Agents (PRIMA 2004). pp. 1–17, Springer. LNAI 3371

  5. Aucher, G.: 2005b, ‘How Our Beliefs Contribute To Interpret Actions’, To appear in the Proceedings of CEEMAS, see www.ceemas.org/ceemas05/

  6. A. Baltag (2002) ArticleTitleA Logic for Suspicious Players: Epistemic Actions and Belief Updates in Games Bulletin of Economic Research 54 IssueID1 1–45 Occurrence Handle10.1111/1467-8586.00138

  7. A. Baltag L. Moss (2004) ArticleTitleLogics for Epistemic Programs Synthese 139 165–224 Occurrence Handle10.1023/B:SYNT.0000024912.56773.5e

  8. Baltag, A., L. Moss, and S. Solecki: 1998, ‘The Logic of Common Knowledge, Public Announcements, and Private Suspicions’. In I. Gilbao (ed.), Proceedings of the 7th conference on theoretical aspects of rationality and knowledge (TARK 98), pp. 43–56

  9. O. Board (2004) ArticleTitleDynamic Interactive Epistemology Games and Economic Behaviour 49 49–80

  10. Bonanno, G.: 2005, ‘A Simple Modal Logic for Belief Revision’, Knowledge, Rationality and Action, this volume

  11. Cantwell, J.: 2005, ‘A Formal Model of Multi-Agent Belief-Interaction’, Journal of Logic, Language, and Information. To appear

  12. A. Darwiche J. Pearl (1997) ArticleTitleOn the Logic of Iterated Belief Revision Artificial Intelligence 89 IssueID1–2 1–29

  13. R. Fagin J. Halpern Y. Moses M. Vardi (1995) Reasoning about Knowledge MIT Press Cambridge, MA

  14. Ferguson, D. and W. Labuschagne: 2002, ‘Information-Theoretic Semantics for Epistemic Logic’, In Proceedings of LOFT 5. Turin, Italy, ICER

  15. P. Gärdenfors (1986) ArticleTitleBelief Revisions and the Ramsey test for Conditionals The Philosophical Review XCV IssueID1 81–93

  16. P. Gärdenfors (1988) Knowledge in Flux: Modeling the Dynamics of Epistemic States Bradford Books, MIT Press Cambridge, MA

  17. Gerbrandy, J.: 1999, ‘Bisimulations on Planet Kripke’, Ph.D. thesis, University of Amsterdam. ILLC Dissertation Series DS-1999-01

  18. J. Gerbrandy W. Groeneveld (1997) ArticleTitleReasoning about Information Change Journal of Logic, Language, and Information 6 147–169 Occurrence Handle10.1023/A:1008222603071

  19. A. Grove (1988) ArticleTitleTwo Modellings for Theory Change Journal of Philosophical Logic 17 157–170 Occurrence Handle10.1007/BF00247909

  20. Halpern, J.: 2001, ‘Lexicographic Probability, Conditional Probability, and Nonstandard probability’, In Proceedings of the Eighth Conference on Theoretical Aspects of Rationality and Knowledge (TARK 8), pp. 17–30

  21. J. Halpern (2003) Reasoning about Uncertainty MIT Press Cambridge MA

  22. Herzig, A., J. Lang, and P. Marquis: 2005, ‘Revision and Update in Multiagent Belief Structures’, Manuscript, also presented at the LOFT 6 conference, see http://www.econ.ucdavis.edu/faculty/bonanno/LOFT6.htm1

  23. Ibn Khaldun: 1938, Les prolégomènes d’Ibn Khaldoun, traduits en français et commentés par M. de Slane. Paris: Librairie Orientaliste Paul Geuthner. Three volumes, published in 1934, 1936, and 1938

  24. S. Konieczny R. P. Pérez (2002) ArticleTitleMerging Information under Constraints: A Logical Framework Journal of Logic and Computation 12 IssueID5 773–808 Occurrence Handle10.1093/logcom/12.5.773

  25. Kooi, B.: 2003, ‘Knowledge, Chance, and Change’, Ph.D. thesis, University of Groningen. ILLC Dissertation Series DS-2003-01

  26. Kraus, S. and D. Lehmann: 1988, ‘Knowledge, Belief and Time’, Theoretical Computer Science 58

  27. S. Kraus D. Lehmann M. Magidor (1990) ArticleTitleNonmonotonic Reasoning, Preferential Models and Cumulative Logics Artificial Intelligence 44 167–207 Occurrence Handle10.1016/0004-3702(90)90101-5

  28. Lenzen, W.: 2003, ‘Knowledge, Belief, and Subjective Probability: Outlines of a Unified System of Epistemic/Doxastic Logic’, In V. Hendricks, K. Jorgensen, and S. Pedersen (eds.), Knowledge Contributors, Dordrecht, pp. 17–31, Kluwer Academic Publishers, Synthese Library Volume 322

  29. D. Lewis (1973) Counterfactuals Harvard University Press Cambridge, MA

  30. S. Lindström W. Rabinowicz (1999) ArticleTitleDDL Unlimited: Dynamic Doxastic Logic for Introspective Agents Erkenntnis 50 353–385 Occurrence Handle10.1023/A:1005577906029

  31. Liu, F.: 2004, ‘Dynamic Variations: Update and Revision for Diverse Agents’, Master’s thesis, ILLC, University of Amsterdam, Amsterdam, the Netherlands

  32. J.-J. Meyer W. Hoek Particlevan der (1995) Cambridge Tracts in Theoretical Computer Science Vol. 41 Cambridge University Press Cambridge

  33. T. Meyer (2001) ArticleTitleBasic Infobase Change Studia Logica 67 215–242 Occurrence Handle10.1023/A:1010547120504

  34. T. Meyer W. Labuschagne J. Heidema (2000) ArticleTitleRefined Epistemic Entrenchment Journal of Logic, Language, and Information 9 237–259

  35. Y. O. Moses D. Dolev J. Y. Halpern (1986) ArticleTitleCheating Husbands and Other Stories: A Case Study in Knowledge, Action, and Communication Distributed Computing 1 IssueID3 167–176 Occurrence Handle10.1007/BF01661170

  36. Plaza, J.: 1989, ‘Logics of Public Communications’, In M. Emrich, M. Pfeifer, M. Hadzikadic, and Z. Ras (eds.), Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems. pp. 201–216

  37. K. Segerberg (1989) ArticleTitleA Note on an Impossibility Theorem of Gärdenfors Noûs 23 351–354

  38. K. Segerberg (1999a) ArticleTitleDefault Logic as Dynamic Doxastic Logic Erkenntnis 50 333–352 Occurrence Handle10.1023/A:1005546526502

  39. K. Segerberg (1999b) Two Traditions in the Logic of Belief: Bringing them Together H. Ohlbach U. Reyle (Eds) Logic, Language, and Reasoning Kluwer Academic Publishers Dordrecht 135–147

  40. Spohn, W.: 1988, ‘Ordinal Conditional Functions: A Dynamic Theory of Epistemic States’, In W. Harper and B. Skyrms (eds.), Causation in Decision, Belief Change, and Statistics, Vol. II, pp. 105–134

  41. R. Stalnaker (1996) ArticleTitleKnowledge, Belief and Counterfactual Reasoning in Games Economics and Philosophy 12 133–163 Occurrence Handle10.1017/S0266267100004132

  42. ten Cate, B.: 2002, ‘Internalizing Epistemic Actions’, In M. Martinez (ed.), Proceedings of the NASSLLI-2002 Student Session, Stanford University

  43. van Benthem, J.: 1996, Exploring Logical Dynamics. CSLI Publications

  44. van Benthem, J.: 2002, ‘One is a Lonely Number: On the Logic of Communication’, Technical report, ILLC, University of Amsterdam. Report PP-2002-27 (material presented at the Logic Colloquium 2002)

  45. van Benthem, J.: 2003, ‘Qualitative Belief Revision’. Manuscript

  46. van Benthem, J., J. van Eijck, and B. Kooi: 2005, ‘Logics of Communication and Change’. Manuscript

  47. van Ditmarsch, H.: 2000, ‘Knowledge Games’. Ph.D. thesis, University of Groningen. ILLC Dissertation Series DS-2000-06

  48. H. Ditmarsch Particlevan (2002) ArticleTitleDescriptions of Game Actions Journal of Logic, Language and Information 11 349–365

  49. van Ditmarsch, H. and B. Kooi: 2005, ‘The Secret of My Success’, Synthese. To appear

  50. van Ditmarsch, H. and W. Labuschagne: 2003, ‘A Multimodal Language for Revising Defeasible Beliefs’, In E. Álvarez, R. Bosch, and L. Villamil (eds.), Proceedings of the 12th International Congress of Logic, Methodology, and Philosophy of Science (LMPS), Oviedo University Press, pp. 140–141

  51. H. Ditmarsch Particlevan W. Hoek Particlevan der B. Kooi (2003) Concurrent Dynamic Epistemic Logic V. Hendricks K. Jørgensen S. Pedersen (Eds) Knowledge Contributors Kluwer Academic Publishers Dordrecht 45–82

  52. van Ditmarsch, H., W. van der Hoek, and B. Kooi: 2004, ‘Public Announcements and Belief Expansion’, In R. Schmidt, I. Pratt-Hartmann, M. Reynolds, and H. Wansing (eds.), Proceedings of AiML-2004 (Advances in Modal Logic), University of Manchester, pp. 62–73

Download references

Author information

Correspondence to Hans P. Van Ditmarsch.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ditmarsch, H.P.V. Prolegomena to Dynamic Logic for Belief Revision. Synthese 147, 229–275 (2005). https://doi.org/10.1007/s11229-005-1349-7

Download citation


  • Information State
  • Preference Relation
  • Binary Relation
  • Natural Generalization
  • Current Information