, Volume 154, Issue 2, pp 173–197 | Cite as

Counterfactuals and Historical Possibility

  • Tomasz Placek
  • Thomas Müller


We show that truth conditions for counterfactuals need not always be given in terms of a vague notion of similarity. To this end, we single out the important class of historical counterfactuals and give formally rigorous truth conditions for these counterfactuals, employing a partial ordering relation called “comparative closeness” that is defined in the framework of branching space-times. Among other applications, we provide a detailed analysis of counterfactuals uttered in the context of lost bets. In an appendix we compare our theory with the branching space-times based reading of counterfactuals recently proposed by Belnap.


Point Event Choice Point Subjunctive Conditional Subjunctive Mood Causal Past 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barker, S. 2003‘A Dilemma for the counterfactual Analysis of Causation’Australasian Journol of Philosophy816271Google Scholar
  2. Belnap, N. 1992‘Branching Space-time’Synthese92385434CrossRefGoogle Scholar
  3. Belnap, N., Perloff, M., Xu, M. 2001Facing the FutureOxford University PressOxfordGoogle Scholar
  4. Belnap, N. 2005‘A Theory of Causation: Causae Causantes (Originating Causes) as Inus Conditions in Branching Space-times’British Journal for the Philosophy of Science56221253CrossRefGoogle Scholar
  5. Bennett, J. 2003A Philosophical Guide to ConditionalsOxford University PressOxfordGoogle Scholar
  6. Edgington, D. 1995‘On Conditionals’Mind104235329Google Scholar
  7. Edgington, D. 2004‘Counterfactuals and the Benefit of Hindsight’Dowe, P.Noordhof, P. eds. Causation and CounterfactualsRoutledgeLondonGoogle Scholar
  8. Goodman N.: 1947, ‘The Problem of Counterfactual Conditionals’, Included as part in of his Fact, Fiction and Forecast, Athlone Press 1954, LondonGoogle Scholar
  9. Kvart, I. 1986A Theory of CounterfactualsHackettIndianapolis, INGoogle Scholar
  10. Lewis, D. 1973CounterfactualsBlackwellOxfordGoogle Scholar
  11. Lewis, D. 1981‘Ordering Semantics and premise Semantics for Counterfactuals’Journal of Philosophical Logic10217234CrossRefGoogle Scholar
  12. Lewis, D. 1986Philosophical PapersOxford University PressOxfordGoogle Scholar
  13. Lewis, D. 1999Papers in Metaphysics and EpistemologyCambridge University PressCambridgeGoogle Scholar
  14. Mårtensson, J. 2000Subjunctive Conditionals and TimeActa Universitatis GothoburgensisGöteborgGoogle Scholar
  15. Müller, T. 2002, ‘Branching Space-time, Modal Logic, and the Counterfactual Conditional’, in T. Placek, and J. Butterfield (eds.). Non-locality and Modality, Kluwer 2002, Dordrecht, pp. 273–291.Google Scholar
  16. Müller, T.: 2005, ‘Probability Theory and Causation. A Branching Space-times Analysis’, British Journal for the Philosophy of Science (forthcoming).Google Scholar
  17. Nute, D. 1980Topics in Conditional LogicReidelDordrechtGoogle Scholar
  18. Placek, T.: 2003, ‘On Belnap’s branching space-times’, in J. Hintikka, T. Czarnecki, K. Kijania-Placek, T. Placek and A. Rojszczak (eds.), Philosophy and Logic. In Search of the Polish Tradition, Kluwer 2003, Dordrecht, pp. 77–92.Google Scholar
  19. Placek, T.: 2005, ‘Comparative Similarity in Branching Space-times’, International Journal of Theoretical Physics (forthcoming).Google Scholar
  20. Stalnaker, R.: 1968, ‘A Theory of Conditionals’, in Studies in Logical Theory, American Philosophical Quarterly Monograph Series, 2, Blackwell 1968, Oxford, pp. 98–112.Google Scholar
  21. Thomason, R. and A. Gupta: 1980, ‘A Theory of Conditionals in the Context of branching time’, in W. Harper, R. Stalnaker and G. Pearce (eds.), Ifs. Reidel 1980, Dordrecht, pp. 299–322.Google Scholar
  22. Xu, M. 1997‘Causation in Branching Time (I): Transitions, Events and Causes’Synthese112137192CrossRefGoogle Scholar
  23. Weihs, G., Jennwein, T., Simon, C., Weinfurter, H., Zeilinger, A. 1998‘Violation of Bell’s Inequality Under Strict Einstein Locality Conditions’Physical Review Letters8150395043CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Department of PhilosophyJagiellonian UniversityKrakówPoland
  2. 2.Philosophisches SeminarBonnGermany

Personalised recommendations