, Volume 148, Issue 3, pp 719–743 | Cite as

Theories and Ordinals in Proof Theory



How do ordinals measure the strength and computational power of formal theories? This paper is concerned with the connection between ordinal representation systems and theories established in ordinal analyses. It focusses on results which explain the nature of this connection in terms of semantical and computational notions from model theory, set theory, and generalized recursion theory.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bachmann, H. 1950‘Die Normalfunktionen und das Problem der ausgezeichneten Folgen von Ordinalzahlen’.Vierteljahresschrift Naturforsch Ges. Zürich95115147Google Scholar
  2. Barwise, J. 1975Admissible Sets and StructuresSpringerBerlinGoogle Scholar
  3. Buchholz, W. 1986‘A New System of Proof-Theoretic Ordinal Functions’Annals of Pure and Applied Logic32195207CrossRefGoogle Scholar
  4. Buchholz, W., Feferman, S., Pohlers, W., Sieg, W. 1981Iterated Inductive Definitions and Subsystems of AnalysisSpringerBerlinGoogle Scholar
  5. Buchholz, W., Schütte, K. 1988Proof Theory of Impredicative Subsystems of AnalysisBibliopolisNaplesGoogle Scholar
  6. Carlson, T. 1999‘Ordinal Arithmetic and Σ1 Elementarity’Archive for Mathematical Logic38449460CrossRefGoogle Scholar
  7. Carlson, T. 2001‘Elementary Patterns of Resemblance’Annals of Pure and Applied Logic1081977CrossRefGoogle Scholar
  8. Devlin, K. 1984ConstructibilitySpringerBerlinGoogle Scholar
  9. Feferman, S.: 1987, ‘Proof Theory: A Personal Report’, in G. Takeuti (ed.), Proof Theory. 2nd ed., North-Holland, Amsterdam, pp. 445–485.Google Scholar
  10. Feferman, S. 1988‘Hilbert’s Program Relativized: Proof-theoretical and Foundational Reductions’The Journal of Symbolic Logic53364384CrossRefGoogle Scholar
  11. Gentzen, G. 1936‘Die Widerspruchsfreiheit der reinen Zahlentheorie’Mathematische Annalen112493565CrossRefGoogle Scholar
  12. Hilbert, D., Bernays, P. 1938Grundlagen der Mathematik IISpringerBerlinGoogle Scholar
  13. Hinman, P. 1978Recursion-Theoretic HierarchiesSpringerBerlinGoogle Scholar
  14. Jäger, G. 1982‘Zur Beweistheorie der Kripke–Platek Mengenlehre über den natürlichen Zahlen’Archiv für Mathematische Logik22121139CrossRefGoogle Scholar
  15. Jäger, G. and W. Pohlers: 1982, ‘Eine beweistheoretische Untersuchung von Δ21 − CA + BI und verwandter Systeme’, Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse (1982).Google Scholar
  16. Jensen R.B., Karp C. (1971) ‘The Primitive Recursive Set Functions’. In Scott D. (ed). Axiomatic Set Theory. Proc. Symp. Pure Math 13 American Mathematical Society, Providence, pp.143–167Google Scholar
  17. Möllerfeld, M., Rathjen, M. 2002‘A Note on the Σ1 Spectrum of a Theory’Archive for Mathematical Logic413334CrossRefGoogle Scholar
  18. Moschovakis Y.N. 1976, Recursion in the Universe of Sets. mimeographed note.Google Scholar
  19. Normann, D.: 1978, ‘Set Recursion’, in Fenstad et al. (eds.), Generalized Recursion Theory II. North-Holland, Amsterdam, pp. 303–320.Google Scholar
  20. Rathjen, M. 1991‘Proof-Theoretic Analysis of KPM’Archive for Mathematical Logic30377403CrossRefGoogle Scholar
  21. Rathjen, M. 1992‘A Proof-Theoretic Characterization of the Primitive Recursive Set Functions’Journal of Symbolic Logic57954969CrossRefGoogle Scholar
  22. Rathjen, M.: 1992, ‘Fragments of Kripke–Platek Set Theory with Infinity’, in P. Aczel, H. Simmons and S. Wainer (eds.), Proof Theory. Cambridge University Press, pp. 251–273.Google Scholar
  23. Rathjen, M. 1993‘How to Develop Proof-Theoretic Ordinal Functions on the Basis of Admissible Sets’Mathematical Quarterly394754Google Scholar
  24. Rathjen, M. 1994‘Collapsing Functions Based on Recursively Large Ordinals: A Well-ordering Proof for KPM’Archive for Mathematical Logic333555CrossRefGoogle Scholar
  25. Rathjen, M. 1994‘Proof Theory of Reflection’Annals of Pure and Applied Logic68181224CrossRefGoogle Scholar
  26. Rathjen M.: 1999, ‘The Realm of Ordinal Analysis’, in S. Cooper and J. Truss (eds.), Sets and Proofs. Cambridge University Press, pp. 219–279.Google Scholar
  27. Richter, W., Aczel, P. 1973

    ‘Inductive Definitions and Reflecting Properties of Admissible Ordinals’

    Fenstad, J.E.Hinman, P. eds. Generalized Recursion TheoryNorth HollandAmsterdam301381
    Google Scholar
  28. Sacks, G.E. 1990Higher Recursion TheorySpringerBerlinGoogle Scholar
  29. Schlüter A (1993). Zur Mengenexistenz in formalen Theorien der Mengenlehre. University of Münster, ThesisGoogle Scholar
  30. Schlüter, A.: 1995, ‘Provability in Set Theories with Reflection’, preprint.Google Scholar
  31. Schütte, K., Simpson, S. 1985‘Ein in der Zahlentheorie unbeweisbarer Satz über endliche Folgen von natürlichen Zahlen’Archiv für Mathematische Logik und Grundlagenforschung257589CrossRefGoogle Scholar
  32. Simpson, S. 1999Subsystems of Second-Order ArithmeticSpringerBerlinGoogle Scholar
  33. Thiel N. (2003) Metapredicative Set Theories and Provable Ordinals. Ph.D. thesis, University of Leeds.Google Scholar
  34. van de Wiele, J.: 1982, ‘Recursive Dilators and Generalized Recursion’, in Proceedings of Herbrand Symposium. North-Holland, Amsterdam, pp. 325–332.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Pure MathematicsUniversity of LeedsLeedsGreat Britain

Personalised recommendations