Synthese

, Volume 148, Issue 3, pp 525–571

Validity Concepts in Proof-theoretic Semantics

Article

Abstract

The standard approach to what I call “proof-theoretic semantics”, which is mainly due to Dummett and Prawitz, attempts to give a semantics of proofs by defining what counts as a valid proof. After a discussion of the general aims of proof-theoretic semantics, this paper investigates in detail various notions of proof-theoretic validity and offers certain improvements of the definitions given by Prawitz. Particular emphasis is placed on the relationship between semantic validity concepts and validity concepts used in normalization theory. It is argued that these two sorts of concepts must be kept strictly apart.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blamey, S. 2002

    ‘Partial Logic’

    Gabbay, D.Guenthner, F. eds. Handbook of Philosophical Logic2KluwerDordrecht261353
    Google Scholar
  2. Brandom, R.B. 2000Articulating Reasons: An Introduction to InferentialismUniversity PressCambridge MassGoogle Scholar
  3. Dummett, M.: 1975, ‘The Philosophical Basis of Intuitionistic Logic’, in H. E. Rose and J. C. Shepherdson (eds.), Logic Colloquium ’73, North Holland, Amsterdam, pp. 5–40, repr. in M. Dummett, Truth and Other Enigmas, Duckworth, London 1978, pp. 215–247.Google Scholar
  4. Dummett, M. 1991The Logical Basis of MetaphysicsDuckworthLondonGoogle Scholar
  5. Etchemendy, J. 1990The Concept of Logical ConsequenceHarvard University PressCambridge MassGoogle Scholar
  6. Gentzen, G.: 1934, ‘Untersuchungen über das logische Schließen’, Mathematische Zeitschrift 39 (1934/35), 176–210, 405–431, English translation (‘Investigations into Logical Deduction’) in M. E. Szabo (ed), The Collected Papers of Gerhard Gentzen, North Holland, Amsterdam 1969, pp. 68–131. Quotations are according to Szabo’s translation.Google Scholar
  7. Girard, J.-Y. 1971

    ‘Une extension de l’interprétation de Gödel à l’analyse, et son application à l’élimination des coupures dans l’analyse et la théorie des types’

    Fenstad, J. E. eds. Proceedings of the 2nd Scandinavian Logic Symposium (Oslo 1970)North HollandAmsterdam6392
    Google Scholar
  8. Hallnäs, L. 1991‘Partial Inductive Definitions’Theoretical Computer Science.87115142Google Scholar
  9. Hallnäs, L.: 2006, ‘On the Proof-Theoretic Foundation of General Definition Theory’, Synthese (this issue).Google Scholar
  10. Hallnäs, L., Schroeder-Heister, P. 1990‘A Proof-Theoretic Approach to Logic Programming. I. Clauses as Rules’Journal of Logic and Computation.1261283Google Scholar
  11. Hallnäs, L., Schroeder-Heister, P. 1991‘A Proof-Theoretic Approach to Logic Programming. II. Programs as Definitions’Journal of Logic and Computation.1635660Google Scholar
  12. Joachimski, F., Matthes, R. 2003‘Short Proofs of Normalization for the Simply-Typed λ-calculus, Permutative Conversions and Gödels T’Archive for Mathematical Logic.425987CrossRefGoogle Scholar
  13. Kahle, R. and P. Schroeder-Heister: 2006, ‘Introduction: Proof-Theoretic Semantics’, Synthese (this issue).Google Scholar
  14. Lorenzen, P. 1955Einführung in die operative Logik und Mathematik2SpringerBerlin1969Google Scholar
  15. Martin-Löf, P. 1971

    ‘Hauptsatz for the Intuitionistic Theory of Iterated Inductive Definitions’

    Fenstad, J. E. eds. Proceedings of the 2nd Scandinavian Logic Symposium (Oslo 1970)North HollandAmsterdam179216
    Google Scholar
  16. Martin-Löf, P.,  et al. 1995

    ‘Verificationism Then and Now’

    DePauli-Schimanovich, W. eds. The Foundational Debate: Complexity and Constructivity in Mathematics and PhysicsKluwerDordrecht187196
    Google Scholar
  17. Martin-Löf, P. 1998

    ‘Truth and Knowability: On the Principles C and K of Michael Dummett’

    Dales, H. G.Oliveri, G. eds. Truth in MathematicsClarendon PressOxford105114
    Google Scholar
  18. Montague, R.: 1970, ‘English as a Formal Language’, in B. Visentini et al. (eds.), Linguaggi nella società e nella tecnica, Milano. Repr. in R. H. Thomason (ed.), Formal Philosophy: Selected Papers of Richard Montague, Yale University Press, New Haven 1974, pp. 188–221.Google Scholar
  19. Muskens, R. A., Benthem, J., Visser, A. 1997

    ‘Dynamics’

    Benthem, J.ter Meulen, A. eds. Handbook of Logic and LanguageElsevierAmsterdam587648
    Google Scholar
  20. Negri, S. and J. von Plato: 2001, Structural Proof Theory, Cambridge University Press.Google Scholar
  21. Prawitz, D. 1965Natural Deduction: A Proof-Theoretical StudyAlmqvist & WiksellStockholmGoogle Scholar
  22. Prawitz, D. 1971

    ‘Ideas and Results in Proof Theory’

    Fenstad, J. E. eds. Proceedings of the 2nd Scandinavian Logic Symposium (Oslo 1970)North HollandAmsterdam235308
    Google Scholar
  23. Prawitz, D.,  et al. 1973

    ‘Towards a Foundation of a General Proof Theory’

    Suppes, P. eds. Logic, Methodology, and Philosophy of Science IVNorth HollandAmsterdam225250
    Google Scholar
  24. Prawitz, D. 1974‘On the Idea of a General Proof Theory’Synthese.276377CrossRefGoogle Scholar
  25. Prawitz, D. 1985‘Remarks on Some Approaches to the Concept of Logical Consequence’Synthese.62152171CrossRefGoogle Scholar
  26. Prawitz, D.: 2006, ‘Meaning Approached Via Proofs’, Synthese (this issue).Google Scholar
  27. Schroeder-Heister, P. 1984a‘A Natural Extension of Natural Deduction’Journal of Symbolic Logic.4912841300CrossRefGoogle Scholar
  28. Schroeder-Heister, P.: 1984b, ‘Generalized Rules for Quantifiers and the Completeness of the Intuitionistic Operators &, ∨, ⊃, ⋏, ∀, ∃’, in M.M. Richter et al., Computation and Proof Theory. Proceedings of the Logic Colloquium held in Aachen, July 1983, Part II. Springer, Berlin, LNM, Vol. 1104, pp. 399–426.Google Scholar
  29. Schroeder-Heister, P.: 1991a, ‘Hypothetical Reasoning and Definitional Reflection in Logic Programming’, in P. Schroeder-Heister (ed.), Extensions of Logic Programming. International Workshop, Tübingen, December 1989, Proceedings. Springer, Berlin, LNCS, Vol. 475, pp. 327–340.Google Scholar
  30. Schroeder-Heister, P.: 1991b, ‘Structural Frameworks, Substructural Logics, and the Role of Elimination Inferences’, in G. Huet and G. Plotkin (eds.), Logical Frameworks. Cambridge University Press, pp. 385–403.Google Scholar
  31. Schroeder-Heister, P. 1991‘Uniform Proof-Theoretic Semantics for Logical Constants. Abstract.’Journal of Symbolic Logic.561142Google Scholar
  32. Schroeder-Heister, P.: 1992, ‘Cut-Elimination in Logics with Definitional Reflection’, in D. Pearce and H. Wansing (eds.), Nonclassical Logics and Information International Workshop, Berlin 1990, Proceedings. Springer, Berlin, LNCS, Vol. 619, pp. 146–171.Google Scholar
  33. Schroeder-Heister, P.: 1993, ‘Rules of Definitional Reflection’, in 8th Annual IEEE Symposium on Logic in Computer Science (Montreal 1993). IEEE Computer Society Press, Los Alamitos, pp. 222–232.Google Scholar
  34. Schroeder-Heister, P.: 1994b, ‘Definitional Reflection and the Completion’, in (ed.), Extensions of Logic Programming. Proceedings of the 4th International Workshop, ELP ’93, St. Andrews, March/April 1993, Springer, Berlin, LNCS, Vol. 798, pp. 333–347.Google Scholar
  35. Tait, W. W. 1967‘Intensional Interpretations of Functionals of Finite Type I’Journal of Symbolic Logic.32198212CrossRefGoogle Scholar
  36. Tait W.W. (2006) ‘Proof-Theoretic Semantics for Classical Mathematics’, Synthese (this issue).Google Scholar
  37. Tarski A.: 1933, ‘Der Wahrheitsbegriff in den formalisierten Sprachen’, Studia Philosophica 1 (1935), 261–405 (translated from the Polish original of 1933, with a postscript). Reprinted in K. Berka and L. Kreiser (eds.), Logik-Texte, Berlin 1971. English translation of the German version in A. Tarski, Logic, Semantics, Metamathematics, Clarendon Press, Oxford, 1956.Google Scholar
  38. Tennant, N. W.: 1978, Natural Logic, Edinburgh University Press.Google Scholar
  39. Tennant, N.W. 1987Anti-Realism and LogicClarendon PressOxfordGoogle Scholar
  40. Tennant, N.W. 1997The Taming of the TrueClarendon PressOxfordGoogle Scholar
  41. Troelstra, A. S. and H. Schwichtenberg: 1996, Basic Proof Theory. Cambridge University Press, 2nd edn. 2000.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Wilhelm-Schickard-InstitutUniversität TübingenTübingenGermany

Personalised recommendations