Synthese

, Volume 148, Issue 3, pp 503–506 | Cite as

Introduction: Proof-theoretic Semantics

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dummett, M. 1991The Logical Basis of MetaphysicsDuckworthLondonGoogle Scholar
  2. Gentzen, G.: 1934, ‘Untersuchungen über das logische Schließen’, Mathematische Zeitschrift 39 (1934/35), 176–210, 405–431, English translation (‘Investigations into Logical Deduction’) in M. E. Szabo (ed.), The Collected Papers of Gerhard Gentzen, North Holland, Amsterdam 1969, 68–131.Google Scholar
  3. Girard, J.-Y. 1971

    ‘Une extension de l’interprétation de Gödel à l’analyse, et son application à l’élimination des coupures dans l’analyse et la théorie des types’

    Fenstad, J. E. eds. Proceedings of the 2nd Scandinavian Logic Symposium (Oslo 1970)North HollandAmsterdam6392
    Google Scholar
  4. Kutschera, F. 1968‘Die Vollständigkeit des Operatorensystems ¬, ∧, ∨, ⊃ für die intuitionistische Aussagenlogik im Rahmen der Gentzensemantik’Archiv für mathematische Logik und Grundlagenforschung.11316CrossRefGoogle Scholar
  5. Martin-Löf, P. 1971

    ‘Hauptsatz for the Intuitionistic Theory of Iterated Inductive Definitions’

    Fenstad, J. E. eds. Proceedings of the 2nd Scandinavian Logic Symposium (Oslo 1970)North HollandAmsterdam179216
    Google Scholar
  6. Martin-Löf, P. 1975

    ‘An Intuitionistic Theory of Types: Predicative Part’

    Rose, H. E.Shepherdson, J. eds. Logic Colloquium ’73North HollandAmsterdam73118
    Google Scholar
  7. Martin-Löf, P.,  et al. 1982

    ‘Constructive Mathematics and Computer Programming’

    Cohen, L. J. eds. Logic, Methodology and Philosophy of Science VI [1979]North HollandAmsterdam153175
    Google Scholar
  8. Prawitz, D. 1971

    ‘Ideas and Results in Proof Theory’

    Fenstad, J. E. eds. Proceedings of the 2nd Scandinavian Logic Symposium (Oslo 1970)North HollandAmsterdam235308
    Google Scholar
  9. Prawitz, D.,  et al. 1973

    ‘Towards a Foundation of a General Proof Theory’

    Suppes, P. eds. Logic, Methodology, and Philosophy of Science IV [1971]North HollandAmsterdam225250
    Google Scholar
  10. Schroeder-Heister, P. 1991‘Uniform Proof-Theoretic Semantics for Logical Constants’. AbstractJournal of Symbolic Logic.561142Google Scholar
  11. Tait, W. W. 1967‘Intensional Interpretations of Functionals of Finite Type I’Journal of Symbolic Logic.32198212CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade de CoimbraCoimbraPortugal
  2. 2.Wilhelm-Schickard-InstitutUniversität TübingenTübingenGermany

Personalised recommendations