, Volume 148, Issue 2, pp 381–399 | Cite as

Superluminal Signaling and Relativity



Special relativity is said to prohibit faster-than-light (superluminal) signaling, yet controversy regularly arises as to whether this or that physical phenomenon violates the prohibition. I argue that the controversy is a result of a lack of clarity as to what it means to ‘signal’, and I propose a criterion. I show that according to this criterion, superluminal signaling is not prohibited by special relativity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armendariz-Picon, C., Mukhanov, V., Steinhardt, P. J. 2001‘Essentials of k-essence’Physical ReviewD63103510Google Scholar
  2. Beckman, D., Gottesman, D., Kitaev, A., Preskill, J. 2002‘Measurability of Wilson Loop OperatorsPhysical ReviewD65065022Google Scholar
  3. Beckman, D., Gottesman, D., Nielsen, M., Preskill, J. 2001‘Causal and Localizable Quantum Operations’Physical ReviewA64052309Google Scholar
  4. Bell, J. 1975

    ‘The Theory of Local Beables’

    Bell, J. eds. Speakable and Unspeakable in Quantum MechanicsCambridge University PressCambridge5262
    Google Scholar
  5. Bell, J. 1987‘Beables for Quantum Field Theory’, Speakable and Unspeakable in Quantum MechanicsCambridge University PressCambridge173180Google Scholar
  6. Boillat, G. 1970‘Nonlinear Electrodynamics: Lagrangians and Equations of Motion’Journal of Mathematical Physics11941951Google Scholar
  7. Born, M., Infeld, I. 1934‘Foundations of the New Field Theory’Proceedings of the Royal Society of LondonA144425451Google Scholar
  8. Brillouin, L. 1960Wave Propagation and Group VelocityAcademic PressNew YorkGoogle Scholar
  9. Collins, A.Hall, N.Paul, L. eds. 2003Causation and CounterfactualsMIT PressCambridgeGoogle Scholar
  10. Courant, R. 1962Methods of Mathematical Physics, Vol. II: Partial Differential EquationsInterscienceNew YorkGoogle Scholar
  11. Drummond, I. T., Hathrell, S. J. 1980‘QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons’Physical ReviewD22343Google Scholar
  12. Earman, J. 1986A Primer on DeterminismKluwerDordrechtGoogle Scholar
  13. Earman, J., Norton, J. 1998‘Exorcist XIV: The Wrath of Maxwell’s Demon, Part I – From Maxwell to Szilard’Studies in the History and Philosophy of Modern Physics29435471Google Scholar
  14. Earman, J., Norton, J. 1999‘Exorcist XIV: The Wrath of Maxwell’s Demon, Part II – from Szilard to Landauer and Beyond’Studies in the History and Philosophy of Modern Physics30140Google Scholar
  15. Erickson, J. K., Caldwell, R. R., Steinhardt, P. J., Armendariz-Picon, C., Mukhanov, V. 2002‘Measuring the Speed of Sound of QuintessencePhysical Review Letters88121301CrossRefGoogle Scholar
  16. Garriga, J., Mukhanov, V. F. 1999‘Perturbations in k-inflation’Physics LettersB458219225Google Scholar
  17. Garrison, J., Mitchell, M., Chiao, R., Bolda, L. 1998‘Superluminal Signals: Causal Loop Paradoxes Revisited’Physics Letters A2451925CrossRefGoogle Scholar
  18. Geroch, R.: 1996, ‘Partial Differential Equations of Physics’, LANL archive preprint: grqc/9602055.Google Scholar
  19. Ghirardi, G., Rimini, A., Weber, T. 1980‘A General Argument Against Superluminal Transmission Through the Quantum-Mechanical Measuring Process’Lettere al Nuovo Cimento27293298Google Scholar
  20. Gibbons, G. W., Herdeiro, C. A. R. 2001‘Born-Infeld Theory and Stringy CausalityPhysical Review D63064006CrossRefGoogle Scholar
  21. Hopfield, J., Brody, C. 2000‘What is a Moment? “Cortical” Sensory Integration Over a Brief Interval I’Proceedings of the National Academy of Science971391913924CrossRefGoogle Scholar
  22. Hopfield, J., Brody, C. 2001‘What is a Moment? Transient Synchrony as a Collective Mechanism for Spatiotemporal Integration’Proceedings of the National Academy of Science9812821287CrossRefGoogle Scholar
  23. Jackson, A., Lande, A., Lautrup, B. 2001‘Apparent Superluminal Behavior in Wave Propagation’Physical ReviewA64044101Google Scholar
  24. Jaynes, E. 1992‘The Gibbs Paradox’, Maximum-Entropy and Bayesian MethodsKluwerDordrechtGoogle Scholar
  25. Kennedy, J.B. 1995‘On the Empirical Foundations of the Quantum No. Signaling Proofs’Philosophy of Science62543560Google Scholar
  26. Leff, H., Rex, A. 1990Maxwell’s Demon: Entropy, Information, ComputingPrinceton University PressPrinceton, NJGoogle Scholar
  27. Maudlin, T. 2002Quantum Non-locality and Relativity2BlackwellMaldenGoogle Scholar
  28. Peacock, K. 1998‘On the Edge of Paradigm Shift: Quantum Non-locality and the Breakdown of Peaceful Coexistence’International Studies in the Philosophy of Science12129149Google Scholar
  29. Plebañski, J.: 1970, Lectures on Non-linear Electrodynamics, Nordisk Institut for Teoretisk Atomfysik (NORDITA).Google Scholar
  30. Redhead, M. 1986

    ‘Relativity and Quantum Mechanics – Conflict or Peaceful Coexistence?

    Greenberger, D. eds. New Techniques and Ideas in Quantum MeasurementNew York Academic of SciencesNew York1420
    Google Scholar
  31. Reichenbach, H. 1958The Philosophy of Space and Time (English translation)Dover PublicationsNew YorkFirst published 1927Google Scholar
  32. Salmon, W. 1998‘A New Look at Causality’, Causality and ExplanationOxford University PressNew York1324Google Scholar
  33. Shifman, M.: 2001, ‘Quark-Hadron Duality’, in M. Shifman (ed.), At the Frontier of Particle Physics/Handbook of QCD, World Scientific, Singapore. LANL archive preprint hep-ph/0009131.Google Scholar
  34. Shimony, A.: 1984, ‘Controllable and Uncontrollable Non-Locality’, in S. Kamefuchi et al. (eds), Foundations of Quantum Mechanics in Light of New Technology, The Physical Society of Japan, Tokyo. Reprinted in Search for a Naturalistic World View, Vol. II, Cambridge University Press, Cambridge, 1993, 130–139.Google Scholar
  35. Shore, G.M. 1996“Faster, than Light’ Photons in Gravitational Fields: Causality, Anomalies and Horizons’Nuclear PhysicsB460379396Google Scholar
  36. Sideris, T. 1985‘Formation of Singularities in Three-Dimensional Compressible Fluids’Communications in Mathematical Physics101475485CrossRefGoogle Scholar
  37. Sommerfeld, A. 1905‘Zur Elektronentheorie. III. über Lichtgeschwindigkeits- und überlichtgeschwindigkeits-Elektronen’F. ViewegBraunschweig148182Gesammelte Schriften, vol. 2Google Scholar
  38. Sorkin, R. 1993

    ‘ImpossibleMeasurements on Quantum Fields’

    Hu, B.Jacobson, T. eds. Directions in General Relativity, Vol. II: A Collection of Essays in honour of Dieter Brill’s Sixtieth BirthdayCambridge University PressCambridge
    Google Scholar
  39. Steinberg, A. 2000‘No Thing Goes Faster than Light’Physics World132122Google Scholar
  40. Wald, R. 1994Quantum Field Theory in Curved Spacetime and Black Hole ThermodynamicsUniversity of Chicago PressChicagoGoogle Scholar
  41. Wang, L., Kuzmich, A., Dogariu, A. 2000‘Gain-Assisted Superluminal Light Propagation’Nature406277CrossRefGoogle Scholar
  42. Weinstein, S. 2003‘Objectivity, Information, and Maxwell’s Demon’Philosophy of Science7012451255Google Scholar
  43. Weinstein, S.: 2004, ‘Gauge theory and quantum theory’, in preparation.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of PhilosophyDartmouth CollegeHanoverU.S.A.

Personalised recommendations