Advertisement

Synthese

, Volume 147, Issue 1, pp 81–120 | Cite as

The Constructive Hilbert Program and the Limits of Martin-Löf Type Theory

  • Michael Rathjen
Article

Keywords

Type Theory Hilbert Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Barwise, J. 1975Admissible Sets and StructuresSpringer-VerlagBerlinGoogle Scholar
  2. Beeson, M. 1985Foundations of Constructive MathematicsSpringer-VerlagBerlinGoogle Scholar
  3. Bernays, P. 1967Hilbert, David, Encyclopedia of PhilosophyMacmillan and Free PressNew York496504Google Scholar
  4. Bishop, E. 1967Foundations of Constructive AnalysisMcGraw-HillNew YorkGoogle Scholar
  5. Brouwer, L.E.J. 1933‘Weten, Willen, Spreken’ (Dutch)Euclides9177193Google Scholar
  6. Brown, D.K. 1987‘Functional Analysis in Weak Subsystems of Second Order Arithmetic, Ph.D. thesisPennsylvania State UniversityUniversity Park, PAGoogle Scholar
  7. Brown, D.K., Simpson, S. 1986‘Which Set Existence Axioms are Needed to Prove the Separable Hahn-Banach Theorem?’Annals of Pure and Applied Logic31123144CrossRefGoogle Scholar
  8. Buchholz W., Feferman S., Pohlers W., and Sieg W., (1981), Iterated Inductive Definitions and Subsystems of Analysis. Springer-Verlag, BerlinGoogle Scholar
  9. Curry, H.B., Feys, R. 1958Combinatory LogicNorth-HollandAmsterdamGoogle Scholar
  10. Diestel, R. 1997Graph TheorySpringer-VerlagNew York-Berlin-HeidelbergGoogle Scholar
  11. Dummett, M.,  et al. 1973‘The Philosophical Basis of Intuitionistic Logic’Rose, H.E. eds. Logic Colloquium ’73North-HollandAmsterdam540Google Scholar
  12. Dummett, M. 1977Elements of IntuitionismClarendon PressOxfordGoogle Scholar
  13. Feferman, S. 1975‘A Language and Axioms for Explicit Mathematics’ lecture notes in Math. 450Springer-VerlagBerlin87139Google Scholar
  14. Feferman, S. 1979‘Constructive Theories of Functions and Classes’Boffa, M.Dalen, D.McAloon, K. eds. Logic Colloquium ’78North-HollandAmsterdam159224Google Scholar
  15. Feferman, S. 1987‘Proof Theory: A Personal Report’Takeuti, G. eds. Proof Theory2North-HollandAmsterdam445485Google Scholar
  16. Feferman, S. 1988‘Hilbert’s Program Relativized: Proof-Theoretical and Foundational Reductions’Journal of Symbolic Logic53364384Google Scholar
  17. Feferman, S. 1998a‘Why a Little Bit Goes a Long Way’Feferman, S. eds. In the Light of LogicOxford University PressOxfordGoogle Scholar
  18. Feferman, S. 1998‘Weyl Vindicated: “Das Kontinuum” 70 Years Later’Feferman, S. eds. In the Light of LogicOxford University PressOxfordGoogle Scholar
  19. Feferman S., (1996), ‘Gödel’s Program for New Axioms: Why, Where, How and What?’. Gödel ’96 Conference, Lecture Notes in Logic 6, Springer Verlag, pp. 3–22.Google Scholar
  20. Feferman, S., Friedman, H., Maddy, P., Steel, J. 2000‘Does Mathematics Need New Axioms?’Bulletin of Symbolic Logic6401446CrossRefGoogle Scholar
  21. Friedman, H. 1976‘Systems of Second Order Arithmetic with Restricted Induction’. I, II (abstracts)Journal of Symbolic Logic41557559Google Scholar
  22. Friedman, H. 1977‘The Metamathematics of the Graph Minor Theorem’Contemporary Mathematics65229261personal communication to L. Harrington. Friedman H., Robertson N., and P. Seymour: 1987Google Scholar
  23. Gentzen, G. 1935‘Untersuchungen über das logische Schliessen’Mathematische Zeitschrift39176210405–431Google Scholar
  24. Gentzen, G. 1936‘Die Widerspruchsfreiheit der reinen Zahlentheorie’Mathematische Annalen112493565CrossRefGoogle Scholar
  25. Gödel, K. 1995‘The Present Situation in the Foundations of Mathematics’ in Collected WorksOxford University PressNew YorkGoogle Scholar
  26. Harrington L., (1977), personal communication to H. Friedman. Hilbert, D.: 1920, ‘Probleme der mathematischen Logik’. Vorlesung, Sommer-Semester 1920, Lecture Notes by Paul Bernays and Moses Schönfinkel, unpublished typescript (Bibliothek Mathematisches Institut, Universität Göttingen).Google Scholar
  27. Hilbert D., (1926), ‘Über das Unendliche’. Mathematische Annalen 95, 161–190. English translation in J. van Heijenoort (eds), From Frege to Gödel. A Source Book in Mathematical Logic, (1897)–1931, Harvard University Press, Cambridge, MA, (1967).Google Scholar
  28. Hilbert D., (1931), ‘Die Grundlegung der elementaren Zahlentheorie’. Mathematische Annalen 104.Google Scholar
  29. Hilbert, D., Bernays, P. 1938Grundlagen der Mathematik IISpringer-VerlagBerlinGoogle Scholar
  30. Hinman, P. 1978Recursion-Theoretic HierarchiesSpringer-VerlagBerlinGoogle Scholar
  31. Howard W.A., (1969), ‘The Formulae-as-Types Notion of Construction’. privately circulated notes.Google Scholar
  32. Jäger G., Pohlers W., (1982), Eine beweistheoretische Untersuchung von δ1/2 –CA+ BI und verwandter Systeme, Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch–Naturwissenschaftliche Klasse.Google Scholar
  33. Kreisel G., (1960), ‘Ordinal Logics and the Characterization of Informal Concepts of Proof’. in Proceedings of the 1958 International Congress of Mathematicians, Edinburgh, pp. 289–299.Google Scholar
  34. Kreisel G., (1963), ‘Generalized Inductive Definitions’. in Stanford Report on the Foundations of Analysis, Section III, Mimeographed, StanfordGoogle Scholar
  35. Maddy, P. 1990Realism in MathematicsClarendon PressOxfordGoogle Scholar
  36. Maddy, P. 1997Naturalism in MathematicsClarendon PressOxfordGoogle Scholar
  37. Martin-Löf, P. 1975‘An Intuitionistic Theory of Types: Predicative Part’Rose, H.E.Sheperdson, J. eds. Logic Colloquium ’73North-HollandAmsterdam73118Google Scholar
  38. Martin-Löf, P. 1982‘Constructive Mathematics and Computer Programming’Cohen, L.J.Los, J.Pfeiffer, H.Podewski, K.-P. eds. LMPS IVNorth-HollandAmsterdamGoogle Scholar
  39. Martin-Löf, P. 1984Intuitionistic Type TheoryBibliopolisNaplesGoogle Scholar
  40. Martin-Löf, P. 1987‘Truth of a Proposition, Evidence of a Judgement, Validity of a Proof’Synthese738799Google Scholar
  41. Martin-Löf, P. 1995‘Verificationism Then and Now’Pauli-Schimanovich, W.Köhler, E.Stadler, F. eds. The Foundational Debate: Complexity and Constructivity in Mathematics and PhysicsKluwer Academic PublishersDordrechtGoogle Scholar
  42. Martin-Löf, P. 1996‘On the Meanings of the Logical Constants and the Justifications of the Logical Laws’Nordic Journal of Philosophical Logic11160Google Scholar
  43. Myhill, J. 1975‘Constructive Set Theory’Journal of Symbolic Logic40347382Google Scholar
  44. Nelson, E. 1987‘Radically Elementary Probability Theory’ Annals of Mathematics Studies 117Princeton University PressPrinceton, NJGoogle Scholar
  45. Nelson, E. 1993‘Taking Formalism Seriously’The Mathematical Intelligencer15811CrossRefGoogle Scholar
  46. Palmgren, E. 1993‘An Information System Interpretation of Martin-Löf’s Partial Type Theory with Universes’Information and Computation11062660Google Scholar
  47. Palmgren, E. 1998‘On Universes in Type Theory’Sambin, G.Smith, J. eds. Twenty-five Years of Type TheoryOxford University PressOxford191204Google Scholar
  48. Paris, J., Harrington, L. 1977‘A Mathematical Incompleteness in Peano Arithmetic’Barwise, J. eds. Handbook of Mathematical LogicNorth HollandAmsterdam11331142Google Scholar
  49. Parsons, C. 1970‘On a Number-Theoretic Choice Schema and its Relation to Induction’Kino, A.Myhill, J.Vesley, R.E. eds. Intuitionism and Proof TheoryNorth-HollandAmsterdam459473Google Scholar
  50. Pohlers, W. 1981‘Proof-Theoretical Analysis of I D? by the Method of Local Predicativity’ in Iterated Inductive Definitions and Subsystems of AnalysisSpringer-VerlagBerlin261357Google Scholar
  51. Prawitz, D. 1977‘Meaning and Proofs: On the Conflict Between Classical and Intuitionistic Logic’Theoria431140Google Scholar
  52. Rathjen, M. 1991‘Proof-Theoretic Analysis of KPM’Archive for Mathematical Logic30377403CrossRefGoogle Scholar
  53. Rathjen, M. 1994‘Proof Theory of Reflection’Annals of Pure and Applied Logic68181224CrossRefGoogle Scholar
  54. Rathjen, M. 1996‘The Recursively Mahlo Property in Second Order Arithmetic’Mathematical Logic Quarterly425966Google Scholar
  55. Rathjen, M., Palmgren, E. 1998‘Inaccessibility in Constructive Set Theory and Type Theory’Annals of Pure and Applied Logic94181200CrossRefGoogle Scholar
  56. Rathjen, M. 1999‘Explicit Mathematics with the Monotone Fixed Point Principle, II: Models’Journal of Symbolic Logic64517550Google Scholar
  57. Rathjen M., (2000), ‘The Superjump in Martin-Löf Type Theory’. In: Buss S., Hajek P., Pudlak P. (eds), Logic Colloquium ’98, Lecture Notes in Logic 13 (Association for Symbolic Logic) pp. 363–386.Google Scholar
  58. Rathjen, M. 2003‘The Anti-Foundation Axiom in Constructive Set Theories’Loon, I.Mints, G.Muskens, R. eds. Games, Logic, and Constructive SetsCSLI PublicationsStanfordGoogle Scholar
  59. Rathjen, M. 2003‘Realizing Mahlo Set Theory in Type Theory’Archive for Mathematical Logic4289101CrossRefGoogle Scholar
  60. Russell, B. 1908‘Mathematical Logic as Based on the Theory of Types’American Journal of Mathematics30222262Google Scholar
  61. Setzer, A. 1998‘A Well-Ordering Proof for the Proof Theoretical Strength of Martin-Löf Type Theory’Annals of Pure and Applied Logic92113159CrossRefGoogle Scholar
  62. Setzer, A. 2000‘Extending Martin-Löf Type Theory by One Mahlo-Universe’Archive for Mathematical Logic39155181CrossRefGoogle Scholar
  63. Sieg, W. 1988‘Hilbert’s Program Sixty Years Later’Journal of Symbolic Logic533144Google Scholar
  64. Simpson, S. 1985‘Nichtbeweisbarkeit von gewissen kombinatorischen Eigenschaften endlicher Bäume’Archiv f. Math. Logik254565Google Scholar
  65. Simpson, S. 1988‘Partial Realizations of Hilbert’s Program’Journal of Symbolic Logic53349363Google Scholar
  66. Simpson, S. 1999Subsystems of Second Order ArithmeticElsevier ScienceAmsterdamGoogle Scholar
  67. Tait, W. 1968‘Constructive Reasoning’Rootselar, B.Staal, J.F. eds. Logic, Methodology and Philosophy of Science IIINorth-HollandAmsterdam185199Google Scholar
  68. Tait, W. 1981‘Finitism’Journal of Philosophy78524546Google Scholar
  69. Troelstra, A.S., Dalen, D. 1988Constructivism in Mathematics: An IntroductionNorth-HollandAmsterdamGoogle Scholar
  70. Waerden, B. 1930Moderne AlgebraSpringer VerlagBerlinGoogle Scholar
  71. Weyl, H. 1931Die Stufen des UnendlichenVerlag von Gustav FischerJenaGoogle Scholar
  72. Weyl, H. 1949Philosophy of Mathematics and Natural SciencesPrinceton University PressPrinceton, NJGoogle Scholar
  73. Woodin, W.H. 1994‘Large Cardinal Axioms and Independence: The Continuum Problem Revisited’The Mathematical Intelligencer163135Google Scholar
  74. Zach, R. 1998‘Numbers and Functions in Hilbert’s Finitism’Taiwanese Journal of Philosophy and History of Science103360Google Scholar
  75. Zach R., (2001), ‘The Practice of Finitism: Epsilon Calculus and Consistency Proofs in Hilbert’s Program’. second draft, 22 February 2001.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Pure MathematicsUniversity of LeedsLeedsU.K

Personalised recommendations