, Volume 147, Issue 1, pp 3–19 | Cite as

Amending Frege’s Grundgesetze der Arithmetik



Frege’s Grundgesetze der Arithmetik is formally inconsistent. This system is, except for minor differences, second-order logic together with an abstraction operator governed by Frege’s Axiom V. A few years ago, Richard Heck showed that the ramified predicative second-order fragment of the Grundgesetze is consistent. In this paper, we show that the above fragment augmented with the axiom of reducibility for concepts true of only finitely many individuals is still consistent, and that elementary Peano arithmetic (and more) is interpretable in this extended system.


Predicative definitions finite reducibility Frege logicism. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boolos, G.: 1998 ‘Is Hume’s Principle Analytic?’, in Logic, Logic, and Logic, Harvard University Press, Cambridge, MA, pp. 301–314. First published in 1997.Google Scholar
  2. Boolos, G.: 1998b, ‘The Standard of Equality of Numbers’, in Logic, Logic, and Logic, Harvard University Press, Cambridge, MA, pp. 202–219. First published in 1990.Google Scholar
  3. Boolos, G. and R. Jeffrey: 1990, Computability and Logic, Cambridge University Press.Google Scholar
  4. Brandom, R. 1994Making It ExplicitHarvard University PressCambridge, MAGoogle Scholar
  5. Burgess, J., Hazen, A. 1998‘Predicative Logic and Formal Arithmetic’Notre Dame Journal of Formal Logic39117CrossRefGoogle Scholar
  6. Dedekind, R.: 1963, The Nature and Meaning of Numbers, Essays on the Theory of Numbers, Dover. First published in German in 1888 under the title Was sind und was sollen die Zahlen.Google Scholar
  7. Dummett, M. 1991Frege: Philosophy of MathematicsHarvard University PressCambridge, MAGoogle Scholar
  8. Feferman, S.: 1998a, ‘Infinity in Mathematics: Is Cantor Necessary? (Conclusion)’, in In the Light of Logic, Oxford University Press, pp. 229–248.Google Scholar
  9. Feferman, S.: 1998b, ‘Weyl Vindicated: Das Kontinuum Seventy Years Later’, in In the Light of Logic, Oxford University Press, pp. 249–283.Google Scholar
  10. Feferman, S.: 1998c, ‘Why a Little Bit Goes a Long Way: Logical Foundations of Scientifically Applicable Mathematics’, in In the Light of Logic, Oxford University Press, pp. 284–298.Google Scholar
  11. Feferman, S., Hellman, G. 1995‘Predicative Foundations of Arithmetic’Journal of Philosophical Logic24117CrossRefGoogle Scholar
  12. Feferman, S. and G. Hellman: 1998, ‘Challenges to Predicative Foundations of Arithmetic’, in G. Sher and R. Tieszen (eds.), Between Logic and Intuition: Essays in honor of Charles Parsons,Cambridge University Press.Google Scholar
  13. Fernandes, A. M., Ferreira, F. 2002‘Groundwork for Weak Analysis’The Journal of Symbolic Logic67557578Google Scholar
  14. Ferreira, F., Wehmeier, K. 2002‘On the Consistency of the Δ11-CA Fragment of Frege’s GrundgesetzeJournal of Philosophical Logic31301311CrossRefGoogle Scholar
  15. Frege, G.: 1967 Basic Laws of Arithmetic, University of California Press, Berkeley, CA. Translation of §§ 1–52 of Grundgesetze der Arithmetik by M. Furth.Google Scholar
  16. Heck, R. 1996‘The Consistency of Predicative Fragments of Frege’s Grundgesetze der ArithmetikHistory and Philosophy of Logic17209220Google Scholar
  17. Heck, R. 1997‘Finitude and Hume’s Principle’Journal of Philosophical Logic26589617CrossRefGoogle Scholar
  18. Heck, R. 1999‘Frege’s Theorem: An Introduction’The Harvard Review of Philosophy75673Google Scholar
  19. Parsons, C.: 1965, ‘Frege’s Theory of Number’, in Philosophy in America, George Allen & Unwin, pp. 180–203. Reprinted with a post-script in Frege’s Philosophy of Mathematics, Harvard University Press, Cambridge, MA (1995).Google Scholar
  20. Parsons, C. 1987a‘Developing Arithmetic in Set Theory without Infinity: Some Historical Remarks’History and Philosophy of Logic8201213Google Scholar
  21. Parsons, T. 1987b‘On the Consistency of the First-order Portion of Frege’s Logical System’Notre Dame Journal of Formal Logic28161168CrossRefGoogle Scholar
  22. Quine, W. O. 1970Philosophy of LogicPrentice-HallNew JersayGoogle Scholar
  23. Simpson, S. 1999Subsystems of Second-Order ArithmeticSpringer-VerlagNew YorkPerspectives in Mathematical LogicGoogle Scholar
  24. Suppes, P. 1957Introduction to Logic.D. Van Nostrand CompanyNew YorkGoogle Scholar
  25. Whitehead, A. N. and B. Russell: 1925, Principia Mathematica, Vol. 1, 2nd edn., Cambridge University Press.Google Scholar
  26. Wright, C. 1983Frege’s Conception of Numbers as ObjectsAberdeen University PressScotlandGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade de LisboaLisboaPortugal

Personalised recommendations