Advertisement

Set-Valued and Variational Analysis

, Volume 27, Issue 4, pp 921–947 | Cite as

Inversion of Nonsmooth Maps between Banach Spaces

  • Jesús A. JaramilloEmail author
  • Sebastián Lajara
  • Óscar Madiedo
Article

Abstract

We study the invertibility nonsmooth maps between infinite-dimensional Banach spaces. To this end, we introduce an analogue of the notion of pseudo-Jacobian matrix of Jeyakumar and Luc in this infinite-dimensional setting. Using this, we obtain several inversion results. In particular, we give a version of the classical Hadamard integral condition for global invertibility in this context.

Keywords

Global invertibility Nonsmooth analysis Pseudo-Jacobian Hadamard integral condition 

Mathematics Subject Classification (2010)

49J52 49J53 46G05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We would like to thank an anonymous referee for pointing out a mistake in a previous version of this paper, and also for suggesting to consider the regularity of Nemytskii operators.

References

  1. 1.
    Appell, J., Zabrejko, P.P.: Nonlinear superposition operators Cambridge Tracts in Mathematics, vol. 95. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  2. 2.
    Borwein, J.M., Fitzpatrick, S.: A weak Hadamard smooth renorming of L 1(Ω,μ). Canad. Math. Bull. 36(4), 407–413 (1993)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Clarke, F.H.: On the inverse function theorem. Pacific J. Math. 64(1), 97–102 (1976)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Clarke, F.H.: Optimization and nonsmooth analysis classics in applied mathematics, vol. 5. SIAM, Philadelphia (1990)CrossRefGoogle Scholar
  5. 5.
    Ekeland, I.: An inverse function theorem in Fréchet spaces. Ann. Institut Henri Poincaré Analyse non linéaire 28, 91–105 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach space theory - the basis for linear and nonlinear analysis. Springer, New York (2011)zbMATHGoogle Scholar
  7. 7.
    Garrido, I., Gutú, O., Jaramillo, J.A.: Global inversion and covering maps on length spaces. Nonlinear Anal. 73(5), 1364–1374 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gutú, O.: On global inverse theorems. Topol. Methods Nonlinear Anal. 49(2), 401–444 (2017)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Gutú, O., Jaramillo, J.A.: Global homeomorphisms and covering projections on metric spaces. Math. Ann. 338(5), 75–95 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hadamard, J.: Sur les transformations ponctuelles. Bull. Soc. Math. France 34, 71–84 (1906)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ioffe, A.D.: Nonsmooth analysis: differential calculus of nondifferentiable mappings. Trans. Amer. Math. Soc. 266, 1–56 (1981)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jaramillo, J.A., Madiedo, O., Sánchez-González, L.: Global inversion of nonsmooth mappings on Finsler manifolds. J. Convex Anal. 20(4), 1127–1146 (2013)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Jaramillo, J.A., Madiedo, O., Sánchez-González, L.: Global inversion of nonsmooth mappings using pseudo-Jacobian matrices. Nonlinear Anal. 108, 57–65 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jeyakumar, V., Luc, D.T.: Approximate Jacobian matrices for nonsmooth continuous maps and C 1-optimization. SIAM J. Control Optim. 36(5), 1815–1832 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jeyakumar, V., Luc, D.T.: An open mapping theorem using unbounded generalized Jacobians. Nonlinear Anal. 50(5), 647–663 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jeyakumar, V., Luc, D.T.: Nonsmooth vector functions and continuous optimization optimization and its applications, vol. 10. Springer, New York (2008)zbMATHGoogle Scholar
  17. 17.
    John, F.: On quasi-isometric maps I. Comm. Pure Appl. Math. 21, 77–110 (1968)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lévy, P.: Sur les fonctions des lignes implicites. Bull. Soc. Math. France 48, 13–27 (1920)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Luc, D.T.: Chain rules for approximate Jacobians of continuous functions. Nonlinear Anal. 61(1-2), 97–114 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Páles, Z., Zeidan, V.: Generalized Jacobian for functions with infinite dimensional range and domain. Set-Valued Anal. 15, 331–375 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Phelps, R.R.: Convex functions, monotone operators and differentiability, Lecture Notes in Mathematics, vol. 1363. Springer, Berling-Heidelberg (1993)Google Scholar
  22. 22.
    Plastock, R.: Homeomorphisms between Banach spaces. Trans. Amer. Math. Soc. 200, 169–183 (1974)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Pourciau, B.H.: Hadamard’s theorem for locally Lipschitzian maps. J. Math. Anal. Appl. 85, 279–285 (1982)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Pourciau, B.H.: Global lnvertibility of nonsmooth mappings. J. Math. Anal. Appl. 131, 170–179 (1988)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Rabier, P.J.: Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds. Ann. Math. 146(3), 647–691 (1997)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Thibault, L.: On generalized differentials and subdifferentials of Lipschitz vector-valued functions. Nonlinear Anal. 10, 1037–1053 (1982)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Troyanski, S.: On locally uniformly convex and differentiable norms in certain non-separable spaces. Studia Math. 37, 173–180 (1971)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Jesús A. Jaramillo
    • 1
    Email author
  • Sebastián Lajara
    • 2
  • Óscar Madiedo
    • 3
  1. 1.Instituto de Matemática Interdisciplinar (IMI) and Departamento de Análisis MatemáticoUniversidad Complutense de MadridMadridSpain
  2. 2.Departamento de MatemáticasUniversidad de Castilla-La Mancha, Escuela de Ingenieros IndustrialesAlbaceteSpain
  3. 3.Departamento de Matemática Aplicada, Ciencia e Ingeniería de los Materiales y Tecnología ElectrónicaUniversidad Rey Juan CarlosMóstolesSpain

Personalised recommendations