Set-Valued and Variational Analysis

, Volume 26, Issue 4, pp 993–1008 | Cite as

Viability Theorem for Deterministic Mean Field Type Control Systems

  • Yurii AverboukhEmail author


A mean field type control system is a dynamical system in the Wasserstein space describing an evolution of a large population of agents with mean-field interaction under a control of a unique decision maker. We develop the viability theorem for the mean field type control system. To this end we introduce a set of tangent elements to the given set of probabilities. Each tangent element is a distribution on the tangent bundle of the phase space. The viability theorem for mean field type control systems is formulated in the classical way: the given set of probabilities on phase space is viable if and only if the set of tangent distributions intersects with the set of distributions feasible by virtue of dynamics.


Viability theorem Mean field type control system Tangent distribution Nonsmooth analysis in the Wasserstein space 

Mathematics Subject Classification (2010)

49Q15 93C10 49J53 46G05 90C56 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahmed, N., Ding, X.: Controlled McKean-Vlasov equation. Commun. Appl. Anal. 5, 183–206 (2001)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows: in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics. ETH Zurich. Birkhäuser, Basel (2005)zbMATHGoogle Scholar
  3. 3.
    Andersson, D., Djehiche, B.: A maximum principle for SDEs of mean-field type. Appl Math Optim 63(3), 341–356 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    As Soulaimani, S.: Viability with probabilistic knowledge of initial condition, application to optimal control. Set-Valued Anal. 16(7), 1037–1060 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Aubin, J.P.: Viability Theory. Birkhäuser, Basel (2009)CrossRefGoogle Scholar
  6. 6.
    Aubin, J.P., Bayen, A.M., Saint-Pierre, P.: Viability Theory. New Directions. Springer, New York (2011)CrossRefGoogle Scholar
  7. 7.
    Aubin, J.P., Cellina, A.: Differential Inclusions. Set-valued Maps and Viability Theory. Springer, New York (1984)CrossRefGoogle Scholar
  8. 8.
    Bayraktar, E., Cosso, A., Pham, H.: Randomized dynamic programming principle and Feynman-Kac representation for optimal control of McKean-Vlasov dynamics. Trans. Amer. Math. Soc. 370, 2115–2160 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bensoussan, A., Frehse, J., Yam, P.: Mean Field Games and Mean Field Type Control Theory. Springer, New York (2013)CrossRefGoogle Scholar
  10. 10.
    Bensoussan, A., Frehse, J., Yam, S.: The master equation in mean field theory. Journal de Mathématiques Pures et Appliquées 103, 1441–1474 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Buckdahn, R., Djehiche, B., Li, J.: A general stochastic maximum principle for SDEs of mean-field type. Appl. Math. Optim. 64(2), 197–216 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Carmona, R., Delarue, F.: Forward-backward stochastic differential equations and controlled McKean–Vlasov dynamics. Preprint at arXiv:1303.5835 (2013)
  13. 13.
    Carmona, R., Delarue, F.: The master equation for large population equilibriums. Stoch. Anal. Appl. 100, 77–128 (2014). SpringerMathSciNetzbMATHGoogle Scholar
  14. 14.
    Carmona, R., Delarue, F., Lachapelle, A.: Control of McKean-Vlasov dynamics versus mean field games. Math. Financ. Econ. 7(2), 131–166 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Cavagnari, G., Marigonda, A., Nguyen, K., Priuli, F.: Generalized control systems in the space of probability measures. Set-Valued and Variational Analysis. (2017). MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gigli, N.: On the inverse implication of brenier-McCann theorems and the structure of \((\mathcal {P}_{2}({M}), W_{2})\). Methods and Applications of Analysis 18, 127–158 (2009)CrossRefGoogle Scholar
  17. 17.
    Huang, M., Malhamé, R., Caines, P.: Nash equilibria for large population linear stochastic systems with weakly coupled agents. In: Boukas, E.K., Malhamé, R. (eds.) Analysis, Control and Optimization of Complex Dynamic Systems, pp. 215–252. Springer (2005)Google Scholar
  18. 18.
    Khaled, B., Meriem, M., Brahim, M.: Existence of optimal controls for systems governed by mean-field stochastic differential equations. Afr. Stat. 9(1), 627–645 (2014)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Lacker, D.: Limit theory for controlled McKean-Vlasov dynamics. SIAM J. Control Optim. 55, 1641–1672 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lasry, J.M., Lions, P.L.: Jeux à champ moyen. I. Le cas stationnaire (French) [Mean field games. I. The stationary case]. C. R. Math. Acad. Sci. Paris 343, 619–625 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lasry, J.M., Lions, P.L.: Jeux à champ moyen. II. Horizon fini et contrôle optimal (French) [Mean field games. II. Finite horizon and optimal control]. C. R. Math. Acad. Sci. Paris 343, 679–684 (2006)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Laurière, M., Pironneau, O.: Dynamic programming for mean-field type control. C. R. Math. Acad. Sci. Paris 352(9), 707–713 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lott, J.: On tangent cones in wasserstein space. Proc. Amer. Math. Soc. 145, 3127–3136 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory. Springer, New York (2006)Google Scholar
  25. 25.
    Pham, H., Wei, X.: Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics. SIAM J. Control Optim. 55, 1069–1101 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Pham, H., Wei, X.: Bellman equation and viscosity solutions for mean-field stochastic control problem. ESAIM Control Optim. Calc. Var. Accepted (2018)Google Scholar
  27. 27.
    Pogodaev, N.: Optimal control of continuity equations. NoDEA Nonlinear Differential Equations Appl. 23, 24 (2016). Art21MathSciNetCrossRefGoogle Scholar
  28. 28.
    Subbotin, A.I.: Generalized solutions of first-order PDEs. The dynamical perspective. Birkhäuser, Basel (1995)Google Scholar
  29. 29.
    Warga, J.: Optimal Control of Differential and Functional Equations. Academic Press, New York (1972)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Krasovskii Institute of Mathematics and MechanicsYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations