Advertisement

The Weak Sequential Closure of Decomposable Sets in Lebesgue Spaces and its Application to Variational Geometry

  • Patrick Mehlitz
  • Gerd Wachsmuth
Article

Abstract

We provide a precise characterization of the weak sequential closure of nonempty, closed, decomposable sets in Lebesgue spaces. Therefore, we have to distinguish between the purely atomic and the nonatomic regime. In the latter case, we get a convexification effect which is related to Lyapunov’s convexity theorem, and in the former case, the weak sequential closure equals the strong closure. The characterization of the weak sequential closure is utilized to compute the limiting normal cone to nonempty, closed, decomposable sets in Lebesgue spaces. Finally, we give an example for the possible nonclosedness of the limiting normal cone in this setting.

Keywords

Decomposable set Lebesgue spaces Limiting normal cone Measurability Weak sequential closure 

Mathematics Subject Classification (2010)

49J53 28B05 90C30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier Science, Oxford (2003)zbMATHGoogle Scholar
  2. 2.
    Aubin, J.-P., Frankowska, H.: Set-valued Analysis. Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston (2009). ISBN 978-0-8176-4847-3. Reprint of the 1990 editionCrossRefzbMATHGoogle Scholar
  3. 3.
    Bogachev, V.I.: Measure Theory. Springer, Berlin (2007)CrossRefzbMATHGoogle Scholar
  4. 4.
    Clarke, F., de Pinho, M.R.: Optimal control problems with mixed constraints. SIAM J. Control Optim. 48(7), 4500–4524 (2010). ISSN 0363-0129.  https://doi.org/10.1137/090757642 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Clason, C., Valkonen, T.: Stability of saddle points via explicit coderivatives of pointwise subdifferentials. Set-Valued Variational Anal. 25(1), 69–112 (2017).  https://doi.org/10.1007/s11228-016-0366-7 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Geremew, W., Mordukhovich, B.S., Nam, N.M.: Coderivative calculus and metric regularity for constraint and variational systems. Nonlinear Anal. Theory Methods Appl. 70(1), 529–552 (2009).  https://doi.org/10.1016/j.na.2007.12.025 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Guo, L., Ye, J.J.: Necessary optimality conditions for optimal control problems with equilibrium constraints. SIAM J. Control Optim. 54(5), 2710–2733 (2016).  https://doi.org/10.1137/15M1013493 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hiai, F., Umegaki, H.: Integrals, conditional expectations, and martingales of multivalued functions. J. Multivar. Anal. 7(1), 149–182 (1977).  https://doi.org/10.1016/0047-259X(77)90037-9 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lax, P.D.: Functional Analysis. Pure and Applied Mathematics (New York). Wiley-Interscience, New York (2002). ISBN 0-471-55604-1zbMATHGoogle Scholar
  10. 10.
    Megginson, R.E.: An Introduction to Banach Space Theory. Graduate Texts in Mathematics. Springer, New York (1998)CrossRefzbMATHGoogle Scholar
  11. 11.
    Mehlitz, P., Wachsmuth, G.: On the Limiting Normal Cone to Pointwise Defined Sets in Lebesgue Spaces. Set-Valued and Variational Analysis (2016).  https://doi.org/10.1007/s11228-016-0393-4
  12. 12.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. Springer-Verlag, Berlin (2006)Google Scholar
  13. 13.
    Ostrovskii, M.I.: Weak sequential closures in Banach space theory and their applications. In: General Topology in Banach spaces, pp. 21–34. Nova Scientific Publications, Huntington (2001)Google Scholar
  14. 14.
    Pang, J.-S., Stewart, D.E.: Differential variational inequalities. Math. Programm. Publ. Math. Programm. Soc. 113(2, Ser. A), 345–424 (2008). ISSN 0025-5610.  https://doi.org/10.1007/s10107-006-0052-x MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Papageorgiou, N.S., Kyritsi-Yiallourou, S.T.: Handbook of Applied Analysis, Volume 19 of Advances in Mechanics and Mathematics. Springer, New York (2009). ISBN 978-0-387-78906-4.  https://doi.org/10.1007/b120946 zbMATHGoogle Scholar
  16. 16.
    Rockafellar, R.T.: Integrals which are convex functionals. Pac. J. Math. 24(3), 525–539 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, volume 317 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1998)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceTechnische Universität Bergakademie FreibergFreibergGermany
  2. 2.Faculty of Mathematics, Professorship Numerical Mathematics (Partial Differential Equations)Technische Universität ChemnitzChemnitzGermany

Personalised recommendations