Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Revisiting some Rules of Convex Analysis

  • 137 Accesses


Convex analysis is devoted to the study and the use of four notions: conjugate functions, normal cones, subdifferentials, support functions under convexity assumptions. These notions are closely related and the calculus rules for one of them imply calculus rules for the other ones. But for none of these notions such rules are always valid without additional assumptions. Thus, much effort has been devoted to these “qualification conditions” (Attouch-Brézis, Boţ and his co-authors, Burachik-Jeyakumar, Rockafellar...). We introduce a new condition that requires a pointwise outer semicontinuity (or closedness) property of an appropriate multifunction. For subdifferentials (resp. normal cones), the multifunction is defined in terms of subdifferentials (resp. normal cones). We relate the new condition with previous ones from the literature.

This is a preview of subscription content, log in to check access.


  1. 1.

    Adly, S., Ernst, E., Théra, M.: On the closedness of the algebraic difference of closed convex sets. J. Math. Pures Appl. 82(9), 1219–1249 (2003)

  2. 2.

    Attouch, H., Brézis, H.: Duality for the sum of convex functions in general banach spaces. In: Barroso, J. (ed.) Aspects of mathematics and its applications, North Holland, pp. 125–133 (1986)

  3. 3.

    Aubin, J.-P., Frankowska, H.: Set-valued analysis. Birkhäuser, Boston (1990)

  4. 4.

    Bauschke, H.H., Borwein, J.M., Li, W.: Strong conical hull intersection property, bounded linear regularity, Jameson’s property (G) and error bounds in convex optimization. Math. Prog. 86, 135–169 (1999)

  5. 5.

    Bauschke, H.H., Borwein, J.M., Tseng, P.: Bounded linear regularity, strong CHIP, and CHIP are distinct properties. J. Convex Anal. 7(2), 395–412 (2000)

  6. 6.

    Bauschke, H.H., Combettes, P.-L.: Convex analysis and monotone operator theory in hilbert spaces, CMS books in mathematics. Springer, Berlin (2010)

  7. 7.

    Borwein, J.M., Burachik, R.S., Yao, L.: Conditions for zero duality gap in convex programming. J. Nonlinear Convex Anal. 15(1), 167–190 (2014)

  8. 8.

    Borwein, J., Vanderwerff, J.D.: Convex functions: constructions, characterizations and counterexamples. Cambridge University Press, Cambridge (2010)

  9. 9.

    Borwein, J.M., Zhu, Q.J.: Variational methods in convex analysis. J. Glob. Optim. 35(2), 197–213 (2006)

  10. 10.

    Borwein, J.M., Zhu, Q.J.: Limiting convex examples for nonconvex subdifferential calculus. J. Convex Anal. 5(2), 221–235 (1998)

  11. 11.

    Boţ, R.I., Grad, S.-M.: Lower semicontinuous type regularity conditions for subdifferential calculus. Optim. Methods and Software 25, 37–48 (2010)

  12. 12.

    Boţ, R.I., Grad, S.-M., Wanka, G.: A new constraint qualification for the formula of the subdifferential of composed convex functions in infinite dimensional spaces. Math. Nachr. 281, 1088–1107 (2008)

  13. 13.

    Boţ, R.I., Grad, S.-M., Wanka, G.: Generalized Moreau-Rockafellar results for composed convex functions. Optimization 58(7), 917–933 (2009)

  14. 14.

    Boţ, R.I., Grad, S.-M., Wanka, G.: New regularity conditions for Lagrange and Fenchel-Lagrange duality in infinite-dimensional spaces. Math. Inequal. Appl. 12 (1), 171–189 (2009)

  15. 15.

    Boţ, R.I., Grad, S.-M., Wanka, G.: Duality in vector optimization. Springer, Berlin (2009)

  16. 16.

    Boţ, R.I., Wanka, G.: An alternative formulation for a new closed convex cone constraint qualification. Nonlinear Anal. Theory Methods Appl. 64(6), 1367–1381 (2006)

  17. 17.

    Boţ, R.I., Wanka, G.: A weaker regularity condition for subdifferential calculus and Fenchel’s duality in infinite dimensional spaces. Nonlinear Anal. Theory Methods Appl. 64, 2787–2804 (2006)

  18. 18.

    Brøndsted, A.: On the subdifferential of the maximum of two convex functions. Math. Scand. 31, 225–230 (1972)

  19. 19.

    Burachik, R.S., Jeyakumar, V.: A simple closure condition for the normal cone intersection formula. Proc. Amer. Math. Soc. 133(6), 1741–1748 (2004)

  20. 20.

    Burachik, R.S., Jeyakumar, V.: A dual condition for the convex subdifferential sum formula with applications. J. Convex Anal. 12(2), 279–290 (2005). MR2197287

  21. 21.

    Burachik, R.S., Jeyakumar, V.: A new geometric condition for Fenchel’s duality in infinite dimensional spaces. Math. Program. 104(B), 229–233 (2005)

  22. 22.

    Burachik, R.S., Jeyakumar, V., Wu, Z.Y.: Necessary and sufficient conditions for stable conjugate duality. Nonlinear Anal Theory Meth. Appl. 64, 1998–2016 (2006)

  23. 23.

    Castaing, C. h., Valadier, M.: Convex Analysis and Measurable Multifunctions Lecture Notes in Mathematics, vol. 580. Springer, Berlin (1977)

  24. 24.

    Combari, C., Laghdir, M., Thibault, L.: Sous-différentiels de fonctions convexes composées. Ann. Sci. Math. Québec 18(2), 119–148 (1994)

  25. 25.

    Combari, C., Laghdir, M., Thibault, L.: On subdifferential calculus for convex functions defined on locally convex spaces. Ann. Sci. Math. Qué,bec 23(1), 23–36 (1999)

  26. 26.

    Correa, R., Hantoute, A., Lòpez, M.A.: Towards supremum-sum subdifferential calculus free of qualification conditions. SIAM J. Optim 26(4), 2219–2234 (2016)

  27. 27.

    Correa, R., Hantoute, A., Lòpez-Cerda, M.A.: Weaker conditions for subdifferential calculus of convex functions. J. Funct. Anal. 271(5), 1177–1212 (2016)

  28. 28.

    Deutsch, F., Li, W., Swetits, J.: Fenchel duality and the strong conical hull intersection property. J. Optim. Th. Appl. 102, 681–695 (1999)

  29. 29.

    Dinh, N., Goberna, M.A., Lòpez, M.A., Son, T.Q.: New Farkas-type constraint qualifications in convex infinite programming. ESAIM Control Optim Calc. Var. 13, 580–597 (2007)

  30. 30.

    Dinh, N., Goberna, M.A., Lòpez, M.A.: From linear to convex systems: consistency, Farkas’ lemma and applications. J. Convex Anal. 13, 113–133 (2006)

  31. 31.

    Dinh, N., Jeyakumar, V., Lee, G.M.: Sequential Lagrangian conditions for convex programs with applications to semi-definite programming. J. Optim. Theory Appl. 125, 85–112 (2005)

  32. 32.

    Dinh, N., Vallet, G., Nghia, T.T.A.: Generalized Farkas lemmas for systems involving convex and DC functions and its applications. J. Convex Anal. 15(2), 235–262 (2008)

  33. 33.

    Dinh, N., Nghia, T.T.A., Vallet, G.: A closedness condition and its applications to DC programs with convex constraints. Optimization 59(3-4), 541–560 (2010)

  34. 34.

    Fenchel, W.: Convexity through the ages, Copenhagen (1973)

  35. 35.

    Fitzpatrick, S.P., Simons, S.: The conjugates, compositions and marginals of convex functions. J. Convex Anal. 8, 423–446 (2001)

  36. 36.

    Goberna, M.A., López-Cerdá, M.A.: New Glimpses on Convex Infinite Optimization Duality, Revista Real Acad. Ciencias Exactas, Fisicas Natur. A Math (2015)

  37. 37.

    Gowda, M.S., Teboulle, M.: A comparison of constraint qualifications in infinite dimensional convex programming. SIAM J. Control Optim. 28, 925–935 (1990)

  38. 38.

    Hantoute, A., López, M.A., Zălinescu, C.: Subdifferential calculus rules in convex analysis: a unifying approach via pointwise supremum functions. SIAM J. Optim. 19(2), 863–882 (2008)

  39. 39.

    Hiriart-Urruty, J.B., Moussaoui, M., Seeger, A., Volle, M.: Subdifferential calculus without qualification conditions, using approximate subdifferential: a survey. Nonlinear Anal. 24, 1724–1754 (1995)

  40. 40.

    Hiriart-Urruty, J.-B., Phelps, R.R.: Subdifferential calculus using epsilon-subdifferentials. J. Funct. Anal. 118, 154–166 (1993)

  41. 41.

    Ioffe, A.D.: Convexity and variational analysis, computational and analytical mathematics, 411-444, Springer Proc. Math Stat, vol. 50. Springer, New York (2013)

  42. 42.

    Ioffe, A.D., Levin, V.L.: Subdifferentials of convex functions. Trans Moscow Math. Soc. 26, 3–73 (1977)

  43. 43.

    Jeroslov, R.G.: Uniform duality in semi-infinite convex optimization. Math. Program. 27(2), 144–154 (1983)

  44. 44.

    Jeyakumar, V.: Constraint qualifications characterizing Lagrangian duality in convex optimization. J. Optim. Theory Appl. 136, 31–41 (2008)

  45. 45.

    Jeyakumar, V., Wu, Z.Y.: A qualification free sequential Pshenichnyi-Rockafellar lemma and convex semidefinite programming. J. Convex Anal. 13(3-4), 773–784 (2006)

  46. 46.

    Li, S.J., Yang, X.Q., Teo, K.L.: Duality for semi-definite and semi-infinite programming. Optimization 52(4-5), 507–528 (2003)

  47. 47.

    Pataki, G.: On the closedness of the linear image of a closed convex cone. Math. Oper. Res. 32(2), 395–412 (2007)

  48. 48.

    Penot, J.-P.: On regularity conditions in mathematical programming. Math. Program. Study 10, 167–199 (1982)

  49. 49.

    Penot, J.-P.: Subdifferential calculus without qualification conditions. J. Convex Anal. 3(2), 1–13 (1996)

  50. 50.

    Penot, J.-P.: Calculus without derivatives, Graduate Texts in Mathematics, vol. 266. Springer, New York (2013)

  51. 51.

    Penot, J.-P.: Analysis, from concepts to applications. Universitext, Springer, London (2016)

  52. 52.

    Ramana, M.V., Tunçel, L., Wolkowicz, H.: Strong duality for semi-definite programming. SIAM J. Optim. 7(3), 644–662 (1997)

  53. 53.

    Rockafellar, R.T.: Convex analysis, Princeton Math. Ser., vol. 28. Princeton University Press, Princeton (1970)

  54. 54.

    Rockafellar, R.T.: Conjugate duality and optimization CBMS-NSF regional conference series in applied mathematics, vol. 16. SIAM, Philadelphia (1974)

  55. 55.

    Rockafellar, R.T., Wets, R.J.-B.: Variational analysis, Grundlehren Der Mathematishen Wissenschaften, vol. 317. Springer, Berlin (2002)

  56. 56.

    Strömberg, T.h.: The operation of infimal convolution. Diss. Math. 352, 1–61 (1996)

  57. 57.

    Sun, X., Long, X.-J., Zen, J.: Constraint qualifications characterizing Fenchel duality in composed convex optimization. J. Nonlin. Convex Anal. 17(2), 325–347 (2016)

  58. 58.

    Thibault, L.: A generalized sequential formula for subdifferentials of sums of convex functions defined on Banach spaces. In: Duriez, R., Michelot, C. (eds.) Recent developments in optimization, Lecture Notes in Economics and Mathematical Systems 429, pp. 340–345. Springer, Berlin (1995)

  59. 59.

    Thibault, L.: Sequential convex subdifferential calculus and sequential Lagrange multipliers. SIAM J. Control. Optim. 35(4), 1434–1444 (1997)

  60. 60.

    Thibault, L.: Limiting convex subdifferential calculus with applications to integration and maximal monotonicity of subdifferential. In: Théra, M. (ed.) Constructive, experimental, and nonlinear analysis, CMS conference proceedings 27, pp. 279–289. American Math. Soc., Providence (2000)

  61. 61.

    Zălinescu, C.: A note on d-stability of convex programs and limiting Lagrangians. Math. Program. 53, 267–277 (1992)

  62. 62.

    Zălinescu, C.: A comparison of constraint qualifications in infinite-dimensional convex programming revisited. J. Australian Math. Soc., Ser. B 40, 353–378 (1999)

  63. 63.

    Zălinescu, C.: Convex analysis in general vector spaces. World Scientific, Singapore (2002)

  64. 64.

    Zălinescu, C.: On duality gap in linear conic problems. Opt. Lett. 6(3), 393–402 (2012)

  65. 65.

    Zălinescu, C.: On zero duality gap and the Farkas lemma for conic programming. Math. Oper. Res. 33, 991–1001 (2008)

Download references

Author information

Correspondence to Jean-Paul Penot.

Additional information

Dedicated to Michel Théra on the occasion of his seventieth birthday

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Penot, J. Revisiting some Rules of Convex Analysis. Set-Valued Var. Anal 25, 773–788 (2017). https://doi.org/10.1007/s11228-017-0462-3

Download citation


  • Composition rule
  • Convexity
  • Normal cone
  • Qualification conditions
  • Regularity
  • Sum rule
  • Subdifferential

Mathematics Subject Classification (2010)

  • 26B25
  • 52A05
  • 26B40
  • 49K99
  • 90C25