Advertisement

Set-Valued and Variational Analysis

, Volume 26, Issue 4, pp 733–757 | Cite as

A Review on Ambiguity in Stochastic Portfolio Optimization

  • Georg Ch. PflugEmail author
  • Mathias Pohl
Open Access
Article

Abstract

In mean-risk portfolio optimization, it is typically assumed that the assets follow a known distribution P 0, which is estimated from observed data. Aiming at an investment strategy which is robust against possible misspecification of P 0, the portfolio selection problem is solved with respect to the worst-case distribution within a Wasserstein-neighborhood of P 0. We review tractable formulations of the portfolio selection problem under model ambiguity, as it is called in the literature. For instance, it is known that high model ambiguity leads to equally-weighted portfolio diversification. However, it often happens that the marginal distributions of the assets can be estimated with high accuracy, whereas the dependence structure between the assets remains ambiguous. This leads to the problem of portfolio selection under dependence uncertainty. We show that in this case portfolio concentration becomes optimal as the uncertainty with respect to the estimated dependence structure increases. Hence, distributionally robust portfolio optimization can have two very distinct implications: Diversification on the one hand and concentration on the other hand.

Keywords

Stochastic optimization Robustness Portfolio optimization Model uncertainty Dependence uncertainty 

Mathematics Subject Classification (2010)

90C15 91B28 

Notes

Acknowledgments

Open access funding provided by University of Vienna. The authors acknowledge support by the Vienna Science and Technologie Fund (WWTF) through project MA14-008.

References

  1. 1.
    Aas, K., Puccetti, G.: Bounds for total economic capital: the dnb case study. Extremes 17(4), 693–715 (2014).  https://doi.org/10.1007/s10687-014-0202-0 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Acerbi, C.: Spectral measures of risk: a coherent representation of subjective risk aversion. J. Bank. Financ. 26(7), 1505–1518 (2002).  https://doi.org/10.1016/S0378-4266(02)00281-9 CrossRefGoogle Scholar
  3. 3.
    Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Financ. 9(3), 203–228 (1999).  https://doi.org/10.1111/1467-9965.00068 MathSciNetCrossRefGoogle Scholar
  4. 4.
    Basak, S., Shapiro, A.: Value-at-risk-based risk management: optimal policies and asset prices. Rev. Financ. Stud. 14(2), 371–405 (2001).  https://doi.org/10.1093/rfs/14.2.371 CrossRefGoogle Scholar
  5. 5.
    Bertsimas, D., Gupta, V., Kallus, N.: Robust SAA. arXiv:1408.4445, p. 617 (2014)
  6. 6.
    Brandt, M.: Portfolio choice problems. Handbook Financ. Economet. 1, 269–336 (2009).  https://doi.org/10.1016/B978-0-444-50897-3.50008-0 Google Scholar
  7. 7.
    Charnes, A., Cooper, W.W.: Chance-constrained programming. Manag. Sci. 6(1), 73–79 (1959).  https://doi.org/10.1287/mnsc.6.1.73 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Consigli, G., Kuhn, D., Brandimarte, P.: Optimal Financial Decision Making under Uncertainty, pp. 255–290. Springer International Publishing, Cham (2017)zbMATHGoogle Scholar
  9. 9.
    Dantzig, G.B.: Linear programming under uncertainty. Manag. Sci. 1(3-4), 197–206 (1955).  https://doi.org/10.2307/2627159 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010).  https://doi.org/10.1287/opre.1090.0741 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Denuit, M., Genest, C., Marceau: Stochastic bounds on sums of dependent risks. Insurance: Math. Econ. 25(1), 85–104 (1999).  https://doi.org/10.1016/S0167-6687(99)00027-X MathSciNetzbMATHGoogle Scholar
  12. 12.
    Doan, X.V., Li, X., Natarajan, K.: Robustness to dependency in portfolio optimization using overlapping marginals. Oper. Res. 63(6), 1468–1488 (2015).  https://doi.org/10.1287/opre.2015.1424 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Edirisinghe, N.C.P.: Stochastic Programming Approximations Using Limited Moment Information, with Application to Asset Allocation, pp. 97–138. Springer, New York (2011).  https://doi.org/10.1007/978-1-4419-1642-6-6 zbMATHGoogle Scholar
  14. 14.
    Embrechts, P., Wang, B., Wang, R.: Aggregation-robustness and model uncertainty of regulatory risk measures. Finance Stochast. 19(4), 763–790 (2015).  https://doi.org/10.1007/s00780-015-0273-z MathSciNetCrossRefGoogle Scholar
  15. 15.
    Emmer, S., Kratz, M., Tasche, D.: What is the best risk measure in practice? a comparison of standard measures. J. Risk 18(2), 31–60 (2015).  https://doi.org/10.2139/ssrn.2370378 CrossRefGoogle Scholar
  16. 16.
    Esfahani, P.M., Kuhn, D. arXiv:1505.05116 (2015)
  17. 17.
    Fabozzi, F.J., Huang, D., Zhou, G.: Robust portfolios: contributions from operations research and finance. Ann. Oper. Res. 176(1), 191–220 (2010).  https://doi.org/10.1007/s10479-009-0515-6 MathSciNetCrossRefGoogle Scholar
  18. 18.
    Fermanian, J.D., Radulovic, D., Wegkamp, M.: Weak convergence of empirical copula processes. Bernoulli 10(5), 847–860 (2004).  https://doi.org/10.3150/bj/1099579158 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Finance Stochast. 6(4), 429–447 (2002).  https://doi.org/10.1007/s007800200072 MathSciNetCrossRefGoogle Scholar
  20. 20.
    Föllmer, H., Schied, A.: Stochastic finance: an introduction in discrete time Walter de Gruyter (2011).  https://doi.org/10.1515/9783110463453
  21. 21.
    Fournier, N., Guilin, A.: On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Relat. Fields 162, 707–738 (2015).  https://doi.org/10.1007/s00440-014-0583-7 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gao, R., Kleywegt, A.J.: Distributionally robust stochastic optimization with Wasserstein distance. arXiv:1604.02199 (2016)
  23. 23.
    Genest, C., Rémillard, B., Beaudoin, D.: Goodness-of-fit tests for copulas: a review and a power study. Insurance: Math. Econ. 44(2), 199–213 (2009).  https://doi.org/10.1016/j.insmatheco.2007.10.005 MathSciNetzbMATHGoogle Scholar
  24. 24.
    Hanasusanto, G.A., Roitch, V., Kuhn, D., Wiesemann, W.: A distributionally robust perspective on uncertainty quantification and chance constrained programming. Math. Program. 151(1), 35–62 (2015).  https://doi.org/10.1007/s10107-015-0896-z MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hansen, L.P., Sargent, T.J.: Robust control and model uncertainty. Am. Econ. Rev. 91(2), 60–66 (2001).  https://doi.org/10.2307/2677734 CrossRefGoogle Scholar
  26. 26.
    Ji, R., Lejeune, M.: Data-driven optimization of ambiguous reward-risk ratio measures. Available at SSRN 2707122 (2015)Google Scholar
  27. 27.
    Kakouris, I., Rustem, B.: Robust portfolio optimization with copulas. Eur. J. Oper. Res. 235(1), 28–37 (2014).  https://doi.org/10.1016/j.ejor.2013.12.022 MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kim, J.H., Kim, W.C., Fabozzi, F.J.: Recent developments in robust portfolios with a worst-case approach. J. Optim. Theory Appl. 161(1), 103–121 (2014).  https://doi.org/10.1007/s10957-013-0329-1 MathSciNetCrossRefGoogle Scholar
  29. 29.
    Konno, H., Yamazaki, H.: Mean-absolute deviation portfolio optimization model and its applications to tokyo stock market. Manag. Sci. 37(5), 519–531 (1991).  https://doi.org/10.1287/mnsc.37.5.519 CrossRefGoogle Scholar
  30. 30.
    Kusuoka, S.: On law invariant coherent risk measures Advances in Mathematical Economics, pp. 83–95. Springer (2001).  https://doi.org/10.1007/978-4-431-67891-5 zbMATHGoogle Scholar
  31. 31.
    Liu, Y., Meskarian, R., Xu, H.: Distributionally robust reward-risk ratio optimization with moment constraints. SIAM J. Optim. 27(2), 957–985 (2017).  https://doi.org/10.1137/16M106114X MathSciNetCrossRefGoogle Scholar
  32. 32.
    Lux, T., Papapantoleon, A.: Model-free bounds on value-at-risk using partial dependence information. arXiv:1610.09734 (2016)
  33. 33.
    Makarov, G.: Estimates for the distribution function of a sum of two random variables when the marginal distributions are fixed. Theory Probab. Appl. 26(4), 803–806 (1982).  https://doi.org/10.1137/1126086 CrossRefGoogle Scholar
  34. 34.
    Markowitz, H.: Portfolio selection. J. Financ. 7(1), 77–91 (1952).  https://doi.org/10.1111/j.1540-6261.1952.tb01525.x Google Scholar
  35. 35.
    Markowitz, H.: Portfolio Selection: Efficient Diversification of Investments. Yale University Press, New Haven (1959).  https://doi.org/10.2307/2975974 Google Scholar
  36. 36.
    McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press, Princeton (2015)zbMATHGoogle Scholar
  37. 37.
    Meskarian, R., Xu, H., Fliege, J.: Numerical methods for stochastic programs with second order dominance constraints with applications to portfolio optimization. Eur. J. Oper. Res. 216(2), 376–385 (2012).  https://doi.org/10.1016/j.ejor.2011.07.044 MathSciNetCrossRefGoogle Scholar
  38. 38.
    Nelsen, R.B.: An Introduction to Copulas. Springer Science & Business Media, Berlin (2007).  https://doi.org/10.1007/978-1-4757-3076-0 zbMATHGoogle Scholar
  39. 39.
    Pflug, G.C.: Some remarks on the value-at-risk and the conditional value-at-risk. In: Probabilistic Constrained Optimization, pp. 272–281. Springer, US (2000).  https://doi.org/10.1007/978-1-4757-3150-7 zbMATHGoogle Scholar
  40. 40.
    Pflug, G.C., Pichler, A.: Approximations for Probability Distributions and Stochastic Optimization Problems. In: Consigli, G., Dempster, M., Bertocchi, M. (eds.) Springer Handbook on Stochastic Optimization Methods in Finance and Energy, International Series in OR and Management Science, vol. 163, pp. 343–387. Springer (2011).  https://doi.org/10.1007/978-1-4419-9586-5 Google Scholar
  41. 41.
    Pflug, G.C., Pichler, A.: Multistage Stochastic Optimization. Springer, Berlin (2014)CrossRefGoogle Scholar
  42. 42.
    Pflug, G.C., Pichler, A., Wozabal, D.: The 1/n investment strategy is optimal under high model ambiguity. J. Bank. Financ. 36(2), 410–417 (2012).  https://doi.org/10.1016/j.jbankfin.2011.07.018 CrossRefGoogle Scholar
  43. 43.
    Pflug, G.C., Römisch, W.: Modeling, measuring and managing risk, vol. 190. World Scientific, Singapore (2007).  https://doi.org/10.1142/6478 CrossRefGoogle Scholar
  44. 44.
    Pflug, G.C., Wozabal, D.: Ambiguity in portfolio selection. Quant. Finan. 7 (4), 435–442 (2007).  https://doi.org/10.1080/14697680701455410 MathSciNetCrossRefGoogle Scholar
  45. 45.
    Puccetti, G., Rüschendorf, L.: Computation of sharp bounds on the distribution of a function of dependent risks. J. Comput. Appl. Math. 236(7), 1833–1840 (2012).  https://doi.org/10.1016/j.cam.2011.10.015 MathSciNetCrossRefGoogle Scholar
  46. 46.
    Puccetti, G., Wang, R.: Extremal dependence concepts. Stat. Sci. 30(4), 485–517 (2015).  https://doi.org/10.1214/15-STS525 MathSciNetCrossRefGoogle Scholar
  47. 47.
    Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–42 (2000).  https://doi.org/10.21314/JOR.2000.038 CrossRefGoogle Scholar
  48. 48.
    Rüschendorf, L.: Random variables with maximum sums. Adv. Appl. Probab. 14(3), 623–632 (1982).  https://doi.org/10.2307/1426677 MathSciNetCrossRefGoogle Scholar
  49. 49.
    Rüschendorf, L.: Mathematical Risk Analysis. Springer, Berlin (2013).  https://doi.org/10.1007/978-3-642-33590-7 CrossRefGoogle Scholar
  50. 50.
    Rüschendorf, L.: Risk Bounds and Partial Dependence Information. Preprint, University of Freiburg (2016)Google Scholar
  51. 51.
    Shorack, G.R., Wellner, J.A.: Empirical processes with applications to statistics, vol. 59 Siam (2009).  https://doi.org/10.1137/1.9780898719017
  52. 52.
    Steinbach, M.C.: Markowitz revisited: mean-variance models in financial portfolio analysis. SIAM Rev. 43(1), 31–85 (2001).  https://doi.org/10.1137/S0036144500376650 MathSciNetCrossRefGoogle Scholar
  53. 53.
    Tintner, G.: The theory of choice under subjective risk and uncertainty. Econometrica: J. Econ. Soc. 9(3/4), 298–304 (1941).  https://doi.org/10.2307/1907198 CrossRefGoogle Scholar
  54. 54.
    Wang, B., Wang, R.: The complete mixability and convex minimization problems with monotone marginal densities. J. Multivar. Anal. 102(10), 1344–1360 (2011).  https://doi.org/10.1016/j.jmva.2011.05.002 MathSciNetCrossRefGoogle Scholar
  55. 55.
    Wang, B., Wang, R.: Extreme negative dependence and risk aggregation. J. Multivar. Anal. 136, 12–25 (2015).  https://doi.org/10.1016/j.jmva.2015.01.006 MathSciNetCrossRefGoogle Scholar
  56. 56.
    Wang, S.: Premium calculation by transforming the layer premium density. ASTIN Bulletin: J. IAA 26(1), 71–92 (1996).  https://doi.org/10.2143/AST.26.1.563234 CrossRefGoogle Scholar
  57. 57.
    Wets, R.: Programming under uncertainty: the complete problem. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 4(4), 316–339 (1966).  https://doi.org/10.1007/bf00539117 MathSciNetCrossRefGoogle Scholar
  58. 58.
    Wozabal, D.: A framework for optimization under ambiguity. Ann. Oper. Res. 193(1), 21–47 (2012).  https://doi.org/10.1007/s10479-010-0812-0 MathSciNetCrossRefGoogle Scholar
  59. 59.
    Xu, H., Zhang, D.: Monte carlo methods for mean-risk optimization and portfolio selection. Comput. Manag. Sci. 9(1), 3–29 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.University of ViennaWienAustria

Personalised recommendations