Advertisement

Set-Valued and Variational Analysis

, Volume 26, Issue 3, pp 631–642 | Cite as

On the Directional Differentiability of the Solution Mapping for a Class of Variational Inequalities of the Second Kind

  • M. Hintermüller
  • T. M. Surowiec
Article
  • 101 Downloads

Abstract

The directional differentiability of the solution mapping for a class of variational inequalities of the second kind inspired by applications in fluid mechanics and moving free boundary problems is investigated. The result is particularly relevant for the model predictive control or optimal control of such variational inequalities in that it can be used to derive stationarity conditions and efficient numerical methods.

Keywords

Variational inequalities of the second kind Free boundary problems Variational analysis Generalized differentiation Hadamard directional differentiability Conical differentiability Control-to-state mapping Optimal control of variational inequalities PDE-constrained optimization 

Mathematics Subject Classifications (2010)

35B30 35B37 35J88 35R35 49A29 49J20 49K20 49J40 49J53 47J20 93C20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thank C. Christof and C. Meyer for pointing out a potential inconsistency in the original manuscript and for making us aware of the work [4].

References

  1. 1.
    Antil, H., Hintermüller, M., Nochetto, R.H., Surowiec, T.M., Wegner, D.: Finite horizon model predictive control of electrowetting on dielectric with pinning. To appear Interfaces and Free BoundariesGoogle Scholar
  2. 2.
    Aubin, J.-P., Frankowska, H.: Set-valued analysis, volume 2 of Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA (1990)zbMATHGoogle Scholar
  3. 3.
    Bonnans, J.F., Shapiro, A.: Perturbation analysis of optimization problems. Springer Series in Operations Research. Springer-Verlag, New York (2000)CrossRefzbMATHGoogle Scholar
  4. 4.
    Christof, C., Meyer, C.: Differentiability properties of the solution operator to an elliptic variational inequality of the second kind. Preprint, http://www.mathematik.tu-dortmund.de/papers/ChristofMeyer2015.pdf
  5. 5.
    De los Reyes, J.C., Meyer, C.: Strong stationarity conditions for a class of optimization problems governed by variational inequalities of the second kind. JOTA 168(2), 375–409 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Duvaut, G., Lions, J.-L.: Inequalities in mechanics and physics. Springer-Verlag, Berlin-New York (1976). Translated from the French by C. W. John, Grundlehren der Mathematischen Wissenschaften, 219CrossRefzbMATHGoogle Scholar
  7. 7.
    Ekeland, I., Temam, R.: Convex analysis and variational problems. North-Holland Publishing Co., Amsterdam, Oxford (1976). American Elsevier Publishing Co., Inc., New York, 1976. Translated from the French, Studies in Mathematics and its Applications, Vol. 1zbMATHGoogle Scholar
  8. 8.
    Fujita, H.: A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions. Sūrikaisekikenkyūsho Kōkyūroku 888(1), 199–216 (1994). Mathematical fluid mechanics and modeling (Kyoto, 1994)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Fujita, H.: Non-stationary Stokes flows under leak boundary conditions of friction type. J. Comput. Math. 19(1), 1–8 (2001)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Haraux, A.: How to differentiate the projection on a convex set in Hilbert space. some applications to variational inequalities. J. Math. Soc. Jpn. 29(4), 615–631 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hintermüller, M.: An active-set equality constrained Newton solver with feasibility restoration for inverse coefficient problems in elliptic variational inequalities. Inverse Probl. 24(3), 034017, 23 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hintermüller, M., Mordukhovich, B.S., Surowiec, T.M.: Several approaches for the derivation of stationarity conditions for elliptic MPECs with upper-level control constraints. Math Program. 146(1-2, Ser. A), 555–582 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hintermüller, M., Surowiec, T.: A bundle-free implicit programming approach for a class of elliptic MPECs in function space. Math Program. 160(1), 271–305 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ioffe, A.D., Tihomirov, V.M.: Theory of extremal problems, volume 6 of studies in mathematics and its applications. North-Holland Publishing Co., Amsterdam (1979)zbMATHGoogle Scholar
  15. 15.
    Jarušek, J., Krbec, M., Rao, M., Sokołowski, J.: Conical differentiability for evolution variational inequalities. J. Diff. Equat. 193, 131–146 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications, volume 88 of Pure and Applied Mathematics. Academic Press, Inc. Harcourt Brace Jovanovich, Publishers, New York, London (1980)zbMATHGoogle Scholar
  17. 17.
    Mignot, F.: Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22(2), 130–185 (1976)CrossRefzbMATHGoogle Scholar
  18. 18.
    Mignot, F., Puel, J.-P.: Optimal control in some variational inequalities. SIAM J. Control Optim. 22(3), 466–476 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rockafellar, R.T.: Conjugate duality and optimization. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1974. Lectures given at the Johns Hopkins University, Baltimore, Md., June, 1973, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 16Google Scholar
  20. 20.
    Shapiro, A.: On concepts of directional differentiability. JOTA 66(3), 477–487 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Walker, S.W., Bonito, A., Nochetto, R.H.: Mixed finite element method for electrowetting on dielectric with contact line pinning. Interfaces Free Bound. 12(1), 85–119 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Walker, S.W., Shapiro, B., Nochetto, R.H.: Electrowetting with contact line pinning: Computational modeling and comparisons with experiments. Physics of Fluids (1994-present) 21(10), 102103 (2009)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of MathematicsHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Department of Mathematics and Computer SciencePhilipps-Universität MarburgMarburgGermany
  3. 3.Weierstrass InstituteBerlinGermany

Personalised recommendations