Set-Valued and Variational Analysis

, Volume 24, Issue 3, pp 403–421

# Monotonicity and Market Equilibrium

Article

## Abstract

Economic theory relates prices to quantities via ” market curves.” Typically, such curves are monotone, hence they admit functional representations. The latter invoke linear pricing of quantities so as to obtain market values. Specifically, if higher prices call forward greater supply, a convex function, bounded below by market values, represents the resulting supply curve. Likewise, if demand decreases at higher prices, a concave function, bounded above by market values, represents the attending demand curve. In short, grantedmonotonicity, market curves are described by bivariate functions, either convex or concave, appropriately bounded by linear valuations of quantities. The bounding supply (demand) function generates ask (resp. bid)valuations. Exchange and trade, as modelled here, are driven by valuation differentials, called bid-ask spreads. These disappear, and market equilibrium prevails, if all ”inverse market curves” intersect in a common price. A main issue is whether and how market agents, by themselves, may reach such equilibrium. The paper provides positive and constructive answers. As vehicle it contends with bilateral transactions.

### Keywords

Exchange markets Equilibrium Monotone correspondences Bid-ask representations Fitzpatrick functions Bilateral exchange Convergence

### Mathematics Subject Classification (2010)

90C25 91B24 91B68

## Preview

### References

1. 1.
Arrow, K. J.: General economic equilibrium: Purpose, analytic techniques, collective choices American Economic Review (1973)Google Scholar
2. 2.
Aubin, J. P., Cellina, A.: Differential inclusions. Springer, Berlin (1984)
3. 3.
Bauschke, H. H., Borwein, J. M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Anal 1, 183–212 (1993)
4. 4.
Bauschke, H. H., wang, X., Yao, L.: Monotone linear relations: Maximality and Fitzpatrick functions. J. Convex Anal 16, 673–686 (2009)
5. 5.
Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: Nonlinear Programming. J. Wiley & Sons, New York (1993)
6. 6.
Bertsekas, D. P.: Nonlinear programming athena scientific (1999)Google Scholar
7. 7.
Biais, B., Glosten, L., Spatt, C.: Market microstructure: A survey of microfoundations, empirical results, and policy implications. J. Financ. Mark 8, 217–264 (2005)
8. 8.
Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud 63, 123–145 (1993)
9. 9.
Borwein, J. M.: Fifty years of maximal monotonicity. Optim. Lett 4, 473–490 (2010)
10. 10.
Borwein, J. M., Vanderwerff, J. D.: Convex functions: Constructions, Characterizations and Counterexamples. Cambridge University Press, Cambridge (2010)
11. 11.
Burachik, R. S., Svaiter, B. F.: Maximal monotonicity, conjugation and the duality product. Proc. American Math. Society 131(8), 2379–2383 (2003)
12. 12.
Foucault, T., Pagano, M., Röell, A.: Market liquidity oxford university press (2013)Google Scholar
13. 13.
Feldman, A. M.: Bilateral trading processes, pairwise optiMality, and Pareto optiMality. Rev. Econ. Stud 40(4), 463–473 (1973)
14. 14.
Fitzpatrick, S.: Representing monotone operators by convex functions. In: Workshop/Miniconference on Functional Analysis and Optimization, vol. 20, pp 59–65 (1988)Google Scholar
15. 15.
Flm, S. D., Antipin, A.: Equilibrium programming using proximal-like algorithms. Math. Programming 78, 29–41 (1996)
16. 16.
Flm, S. D.: On sharing of risks and resources. In: Reich, S., Zaslavksi, A. (eds.) Optimization Theory and Related Topics, American Mathematical Society, series Contemporary Mathematics. doi:10.1090/conm/568/11276, vol. 568, pp 53–68 (2012)
17. 17.
Flm, S. D.: Exchanges and measures of risk. Math. Finan. Econ 5(4), 249–267 (2012)
18. 18.
Flm, S.D., Gramstad, K.: Direct exchange in linear economies. Int. Game Theory Rev 14(4), 18 (2012). doi:10.1142/S0219198912400063
19. 19.
Flm, S. D.: Bilateral exchange and market equilibrium. Set-Valued Var. Anal 24, 1–11 (2016)
20. 20.
Hildenbrand, W.: On the law of demand. Econometrica 51(4), 997–1019 (1983)
21. 21.
Hurwicz, L.: The design of mechanisms for resource allocation. Am. Econ. Rev 63(2), 1–30 (1973)Google Scholar
22. 22.
Krylov, N.: Properties of monotone mappings. Lithuanian Math. Journal 22(2), 140–145 (1982)
23. 23.
Martínez-Legaz, J.-E., Svaiter, B. F.: Monotone operators representable by l.s.c. convex functions. Set-Valued Anal 13, 21–46 (2005)
24. 24.
Mas-Colell, A., Whinston, M. D., Geen, J. R.: Microeconomic theory oxford university press (1995)Google Scholar
25. 25.
Martínez-Legaz, J.-E., Svaiter, B. F.: Minimal convex functions bounded below by the duality productGoogle Scholar
26. 26.
Necoara, I., Nesterov, Y., Glineur, F.: A random coordinate descent method on large-scale optimization problems with linear constraints, Typescript (2015)Google Scholar
27. 27.
Penot, J. -P., Zalinescu, C.: On the convergence of maximal monotone operators. Proc. Am. Math. Soc 134(7), 1937–1946 (2006)
28. 28.
Rockafellar, R. T.: On the maximal monotonicity of subdifferential mappings. Pacific J. Math 33, 209–216 (1970)
29. 29.
Rockafellar, R. T., Wets, J. -B.: Variational analysis. Springer, Berlin (1998)
30. 30.
Simons, S.: Minimax and Monotonicity, vol. 1693 of Lecture Notes in Mathematics. Springer, Berlin (1998)Google Scholar
31. 31.
Simons, S.: From Hahn-Banach to monotonicity. Springer, Berlin (2008)
32. 32.
Simons, S., Zalinescu, C.: Fenchel duality, Fitzpatrick functions and maximal monotonicity. J. Nonlinear Convex Anal 6, 1–22 (2005)
33. 33.
Rubinstein, A., Wolinsky, A.: Decentralized trading, strategic behavior and the Walrasian outcome. Rev. Econ. Stud 57, 63–78 (1990)
34. 34.
Rysman, M.: The economics of two-sided markets. J. Econ. Perspect 3, 125–143 (2009)
35. 35.
Smith, V. L.: Microeconomic systems as an experimental science. Am. Econ. Rev 72(5), 923–55 (1982)Google Scholar
36. 36.
Tesfatsion, L., Judd, K. L.: Handbook of computational economics, vol. II. Agent-Based Computational Economics, North-Holland (2006)Google Scholar
37. 37.
Tseng, P., Yun, S.: A block-coordinate gradient descent method for linearly constrained nonsmooth separable optimization. J. Optim. Theory Appl 140, 513–535 (2009)