Set-Valued and Variational Analysis

, Volume 24, Issue 3, pp 403–421 | Cite as

Monotonicity and Market Equilibrium

  • Sjur Didrik Flåm


Economic theory relates prices to quantities via ” market curves.” Typically, such curves are monotone, hence they admit functional representations. The latter invoke linear pricing of quantities so as to obtain market values. Specifically, if higher prices call forward greater supply, a convex function, bounded below by market values, represents the resulting supply curve. Likewise, if demand decreases at higher prices, a concave function, bounded above by market values, represents the attending demand curve. In short, grantedmonotonicity, market curves are described by bivariate functions, either convex or concave, appropriately bounded by linear valuations of quantities. The bounding supply (demand) function generates ask (resp. bid)valuations. Exchange and trade, as modelled here, are driven by valuation differentials, called bid-ask spreads. These disappear, and market equilibrium prevails, if all ”inverse market curves” intersect in a common price. A main issue is whether and how market agents, by themselves, may reach such equilibrium. The paper provides positive and constructive answers. As vehicle it contends with bilateral transactions.


Exchange markets Equilibrium Monotone correspondences Bid-ask representations Fitzpatrick functions Bilateral exchange Convergence 

Mathematics Subject Classification (2010)

90C25 91B24 91B68 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arrow, K. J.: General economic equilibrium: Purpose, analytic techniques, collective choices American Economic Review (1973)Google Scholar
  2. 2.
    Aubin, J. P., Cellina, A.: Differential inclusions. Springer, Berlin (1984)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bauschke, H. H., Borwein, J. M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Anal 1, 183–212 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bauschke, H. H., wang, X., Yao, L.: Monotone linear relations: Maximality and Fitzpatrick functions. J. Convex Anal 16, 673–686 (2009)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: Nonlinear Programming. J. Wiley & Sons, New York (1993)zbMATHGoogle Scholar
  6. 6.
    Bertsekas, D. P.: Nonlinear programming athena scientific (1999)Google Scholar
  7. 7.
    Biais, B., Glosten, L., Spatt, C.: Market microstructure: A survey of microfoundations, empirical results, and policy implications. J. Financ. Mark 8, 217–264 (2005)CrossRefGoogle Scholar
  8. 8.
    Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud 63, 123–145 (1993)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Borwein, J. M.: Fifty years of maximal monotonicity. Optim. Lett 4, 473–490 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Borwein, J. M., Vanderwerff, J. D.: Convex functions: Constructions, Characterizations and Counterexamples. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  11. 11.
    Burachik, R. S., Svaiter, B. F.: Maximal monotonicity, conjugation and the duality product. Proc. American Math. Society 131(8), 2379–2383 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Foucault, T., Pagano, M., Röell, A.: Market liquidity oxford university press (2013)Google Scholar
  13. 13.
    Feldman, A. M.: Bilateral trading processes, pairwise optiMality, and Pareto optiMality. Rev. Econ. Stud 40(4), 463–473 (1973)CrossRefzbMATHGoogle Scholar
  14. 14.
    Fitzpatrick, S.: Representing monotone operators by convex functions. In: Workshop/Miniconference on Functional Analysis and Optimization, vol. 20, pp 59–65 (1988)Google Scholar
  15. 15.
    Flm, S. D., Antipin, A.: Equilibrium programming using proximal-like algorithms. Math. Programming 78, 29–41 (1996)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Flm, S. D.: On sharing of risks and resources. In: Reich, S., Zaslavksi, A. (eds.) Optimization Theory and Related Topics, American Mathematical Society, series Contemporary Mathematics. doi: 10.1090/conm/568/11276, vol. 568, pp 53–68 (2012)
  17. 17.
    Flm, S. D.: Exchanges and measures of risk. Math. Finan. Econ 5(4), 249–267 (2012)CrossRefGoogle Scholar
  18. 18.
    Flm, S.D., Gramstad, K.: Direct exchange in linear economies. Int. Game Theory Rev 14(4), 18 (2012). doi: 10.1142/S0219198912400063 MathSciNetzbMATHGoogle Scholar
  19. 19.
    Flm, S. D.: Bilateral exchange and market equilibrium. Set-Valued Var. Anal 24, 1–11 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hildenbrand, W.: On the law of demand. Econometrica 51(4), 997–1019 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hurwicz, L.: The design of mechanisms for resource allocation. Am. Econ. Rev 63(2), 1–30 (1973)Google Scholar
  22. 22.
    Krylov, N.: Properties of monotone mappings. Lithuanian Math. Journal 22(2), 140–145 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Martínez-Legaz, J.-E., Svaiter, B. F.: Monotone operators representable by l.s.c. convex functions. Set-Valued Anal 13, 21–46 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mas-Colell, A., Whinston, M. D., Geen, J. R.: Microeconomic theory oxford university press (1995)Google Scholar
  25. 25.
    Martínez-Legaz, J.-E., Svaiter, B. F.: Minimal convex functions bounded below by the duality productGoogle Scholar
  26. 26.
    Necoara, I., Nesterov, Y., Glineur, F.: A random coordinate descent method on large-scale optimization problems with linear constraints, Typescript (2015)Google Scholar
  27. 27.
    Penot, J. -P., Zalinescu, C.: On the convergence of maximal monotone operators. Proc. Am. Math. Soc 134(7), 1937–1946 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Rockafellar, R. T.: On the maximal monotonicity of subdifferential mappings. Pacific J. Math 33, 209–216 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Rockafellar, R. T., Wets, J. -B.: Variational analysis. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  30. 30.
    Simons, S.: Minimax and Monotonicity, vol. 1693 of Lecture Notes in Mathematics. Springer, Berlin (1998)Google Scholar
  31. 31.
    Simons, S.: From Hahn-Banach to monotonicity. Springer, Berlin (2008)zbMATHGoogle Scholar
  32. 32.
    Simons, S., Zalinescu, C.: Fenchel duality, Fitzpatrick functions and maximal monotonicity. J. Nonlinear Convex Anal 6, 1–22 (2005)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Rubinstein, A., Wolinsky, A.: Decentralized trading, strategic behavior and the Walrasian outcome. Rev. Econ. Stud 57, 63–78 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Rysman, M.: The economics of two-sided markets. J. Econ. Perspect 3, 125–143 (2009)CrossRefGoogle Scholar
  35. 35.
    Smith, V. L.: Microeconomic systems as an experimental science. Am. Econ. Rev 72(5), 923–55 (1982)Google Scholar
  36. 36.
    Tesfatsion, L., Judd, K. L.: Handbook of computational economics, vol. II. Agent-Based Computational Economics, North-Holland (2006)Google Scholar
  37. 37.
    Tseng, P., Yun, S.: A block-coordinate gradient descent method for linearly constrained nonsmooth separable optimization. J. Optim. Theory Appl 140, 513–535 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Informatics DepartmentThe University of BergenBergenNorway

Personalised recommendations