Set-Valued and Variational Analysis

, Volume 24, Issue 2, pp 207–229

# Normally Admissible Stratifications and Calculation of Normal Cones to a Finite Union of Polyhedral Sets

• Michal Červinka
• Miroslav Pištěk
Article

## Abstract

This paper considers computation of Fréchet and limiting normal cones to a finite union of polyhedra. To this aim, we introduce a new concept of normally admissible stratification which is convenient for calculations of such cones and provide its basic properties. We further derive formulas for the above mentioned cones and compare our approach to those already known in the literature. Finally, we apply this approach to a class of time dependent problems and provide an illustration on a special structure arising in delamination modeling.

### Keywords

Union of polyhedral sets Tangent cone Fréchet normal cone Limiting normal cone Normally admissible stratification Time dependent problems Delamination model

### Mathematics Subject Classifications (2010)

90C31 90C33 65K10 34D20 37C75

## Preview

### References

1. 1.
Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems, vol. 35. Springer (2008)Google Scholar
2. 2.
Achtziger, W., Kanzow, C.: Mathematical programs with vanishing constraints: Optimality conditions and constraint qualifications. Math. Program. 114, 69–99 (2008)
3. 3.
Adam, L., Outrata, J., Roubíček, T.: Identification of some rate-independent systems with illustration on cohesive contacts at small strains. SubmittedGoogle Scholar
4. 4.
Bounkhel, M.: Regularity Concepts in Nonsmooth Analysis: Theory and Applications. Springer (2012)Google Scholar
5. 5.
Červinka, M., Outrata, J., Pištěk, M.: On stability of M-stationary points in MPCCs. Set-Valued Variational Anal. 22(3), 575–595 (2014)
6. 6.
Dempe, S.: Foundations of Bilevel Programming. Springer (2002)Google Scholar
7. 7.
Dontchev, A., Rockafellar, R.T.: Characterizations of strong regularity for variational inequalities over polyhedral convex sets. SIAM J. Optim. 6(4), 1087–1105 (1996)
8. 8.
Dontchev, A., Rockafellar, R.T.: Implicit Functions and Solution Mappings. Springer (2009)Google Scholar
9. 9.
Ewald, G.: Combinatorial Convexity and Algebraic Geometry. Springer (1996)Google Scholar
10. 10.
Flegel, M.L., Kanzow, C., Outrata, J.: Optimality conditions for disjunctive programs with application to mathematical programs with equilibrium constraints. Set-Valued Anal. 15(2), 139–162 (2007)
11. 11.
Goresky, M., MacPherson, R.: Stratified Morse Theory. Springer (1988)Google Scholar
12. 12.
Henrion, R., Outrata, J.: On calculating the normal cone to a finite union of convex polyhedra. Optim. A J. Math. Program. Oper. Res. 57(1), 57–78 (2008)
13. 13.
Henrion, R., Römisch, W.: On M-stationary points for a stochastic equilibrium problem under equilibrium constraints in electricity spot market modeling. Appl. Math. 52(6), 473–494 (2007)
14. 14.
Ioffe, A.D., Outrata, J.: On metric and calmness qualification conditions in subdifferential calculus. Set-Valued Anal. 16(2–3), 199–227 (2008)
15. 15.
Lu, S., Budhiraja, A.: Confidence regions for stochastic variational inequalities. Math. Oper. Res. 38(3), 545–568 (2013)
16. 16.
Lu, S., Robinson, S.: Normal fans of polyhedral convex sets. Set-Valued Anal. 16(2), 281–305 (2008)
17. 17.
Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press (1996)Google Scholar
18. 18.
Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I. Springer (2006)Google Scholar
19. 19.
Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation II. Springer (2006)Google Scholar
20. 20.
Mordukhovich, B.S., Outrata, J.: Coderivative analysis of quasi-variational inequalities with applications to stability and optimization. SIAM J. Optim. 18(2), 389–412 (2007)
21. 21.
Outrata, J., Kočvara, M., Zowe, J.: Nonsmooth approach to Optimization Problems with Equilibrium Constraints. Kluwer Academic Publishers, Boston (1998)
22. 22.
Pflaum, M.: Analytic and Geometric Study of Stratified Spaces. Springer (2001)Google Scholar
23. 23.
Robinson, S.: Some continuity properties of polyhedral multifunctions. Math. Programm. Study 14, 206–214 (1981)
24. 24.
Rockafellar, R.T.: Convex Analysis. Princeton University Press (1970)Google Scholar
25. 25.
Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer (1998)Google Scholar
26. 26.
Roubíček, T., Panagiotopoulos, C.G., Mantic, V.: Quasistatic adhesive contact of visco-elastic bodies and its numerical treatment for very small viscosity. ZAMM J. Appl. Math. Mech. 93(10–11), 823–840 (2013)
27. 27.
Scholtes, S.: Introduction to Piecewise Differentiable Equations. Springer (2012)Google Scholar