Set-Valued and Variational Analysis

, Volume 24, Issue 1, pp 1–11 | Cite as

Bilateral Exchange and Competitive Equilibrium

  • Sjur Didrik Flåm


Motivated by computerized markets, this paper considers direct exchange between matched agents, just two at a time. Each party holds a ”commodity vector,” and each seeks, whenever possible, a better holding. Focus is on feasible, voluntary exchanges, driven only by (projected) differences in generalized gradients. The paper plays down the importance of agents’ competence, experience and foresight. It also reduces the role of optimization, and it allows non-smooth data. Yet it identifies reasonable conditions which suffice for convergence to competitive equilibrium.


Bilateral exchange Convex preferences Competitive equilibrium Generalized gradients Transferable utility 

Mathematics Subject Classification (2010)

91B26 91B55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Analysis 1, 183–212 (1993)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming, J. Wiley, New York (1993)Google Scholar
  3. 3.
    Dalton, G.: Aboriginal economics in stateless societies: interaction spheres. In: Erickson, J., Earle, T. (eds.) Exchange Systems in Pre-History. Academic Press, New York (1977)Google Scholar
  4. 4.
    Danskin, J.M.: The Theory of Max-Min and its Applications to Weapons Allocations Problems. Springer Verlag, Berlin (1967)CrossRefGoogle Scholar
  5. 5.
    Danzig, G.B., Wolfe, P.: The decomposition algorithm for linear programs. Econometrica 29, 767–778 (1961)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Feldman, A.M.: Bilateral trading processes, pairwise optimality, and Pareto optimality. Rev. Econ. Stud. 4, 463–473 (1973)CrossRefGoogle Scholar
  7. 7.
    Flåm, S.D., Koutsougeras, L.: Private information, transferable utility, and the core. Economic Theory 42, 591–609 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Flåm, S.D.: On sharing of risks and resources. In: Reich, S., Zaslavksi, A. (eds.) Optimization Theory and Related Topics, vol. 568, pp. 53–68. American Mathematical Society, series Contemporary Mathematics. American Mathematical Society, series Contemporary Mathematics (2012). doi: 10.1090/conm/568/11276
  9. 9.
    Flåm, S.D.: Exchanges and measures of risk. Math. Finan. Econ. 5(4), 249–267 (2012)CrossRefGoogle Scholar
  10. 10.
    Flåm, S.D., Godal, O., Soubeyran, A.: Gradient Differences and Bilateral Barters. Optimization, 1–20 (2012). doi: 10.1080/02331934.2012.679940
  11. 11.
    Flåm, S.D.: Coupled projects, core imputations, and the CAPM. J. Math. Econ. 48(3), 170–176 (2012)CrossRefzbMATHGoogle Scholar
  12. 12.
    Flåm, S.D., Gramstad, K.: Direct exchanges in linear economies. Int. Game Theory Review, 14 (2012)Google Scholar
  13. 13.
    Gode, D.K., Sunder, S.: Allocative efficiency of markets with zero intelligence traders: markets as a partial substitute for individual rationality. J. Polit. Econ. 101, 119–37 (1993)CrossRefGoogle Scholar
  14. 14.
    Hiriart-Urruty, J-B.: Bases, outils et principes pour l’analyse variationelle. Springer, Berlin (2012)Google Scholar
  15. 15.
    Mordukhovich, B.S., Nam, N.M.: An Easy Path to Convex Analysis and Applications. Morgan & Claypool Publishers (2014)Google Scholar
  16. 16.
    Necoara, I., Nesterov, Y., Glineur, F.: A random coordinate descent method on large-scale optimization problems with linear constraints, Typescript (2015)Google Scholar
  17. 17.
    Osborne, M.J., Rubinstein, A.: Bargaining and Markets. Academic Press, New York (1990)zbMATHGoogle Scholar
  18. 18.
    Owen, G.: The core of linear production games. Math. Program. 9, 358–370 (1975)CrossRefzbMATHGoogle Scholar
  19. 19.
    Malo, P., Pennanen, T.: Reduced form modelling of limit order markets, Typescript (2010)Google Scholar
  20. 20.
    Rockafellar, R.T., Wets, J-B.: Variational Analysis. Springer Verlag, Berlin (1998)CrossRefzbMATHGoogle Scholar
  21. 21.
    Roth, A.E., Sotomayor, M.O.: Two-sided matching: A study in game-theoretic modeling and analysis. Cambridge University Press, New York (1990)CrossRefzbMATHGoogle Scholar
  22. 22.
    Rubinstein, A., Wolinsky, A.: Decentralized trading, strategic behavior and the Walrasian outcome. Rev. Econ. Stud. 57, 63–78 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Shapley, L., Shubik, M.: Trade using one commodity as a means of payment. J. Polit. Econ. 85, 937–968 (1977)CrossRefGoogle Scholar
  24. 24.
    Smith, V.L.: Papers in Experimental Economics. Cambridge University Press, Cambridge (1991)CrossRefGoogle Scholar
  25. 25.
    Tseng, P., Yun, S.: Block-coordinate gradient descent method for linearly constrained nonsmooth separable optimization. J. Optim. Theory Appl. 140, 513–535 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Xiao, L., Boyd, S.: Optimal scaling of a gradient method for distributed resource allocation. J. Optim. Theory Appl. 129(3), 469–488 (2006)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Economics DepartmentUniversity of BergenBergenNorway

Personalised recommendations