Set-Valued and Variational Analysis

, Volume 20, Issue 2, pp 307–330 | Cite as

Primal-Dual Splitting Algorithm for Solving Inclusions with Mixtures of Composite, Lipschitzian, and Parallel-Sum Type Monotone Operators

Article

Abstract

We propose a primal-dual splitting algorithm for solving monotone inclusions involving a mixture of sums, linear compositions, and parallel sums of set-valued and Lipschitzian operators. An important feature of the algorithm is that the Lipschitzian operators present in the formulation can be processed individually via explicit steps, while the set-valued operators are processed individually via their resolvents. In addition, the algorithm is highly parallel in that most of its steps can be executed simultaneously. This work brings together and notably extends various types of structured monotone inclusion problems and their solution methods. The application to convex minimization problems is given special attention.

Keywords

Maximal monotone operator Monotone inclusion Nonsmooth convex optimization Parallel sum Set-valued duality Splitting algorithm 

Mathematics Subject Classifications (2010)

47H05 49M29 49M27 90C25 49N15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acker, F., Prestel, M.A.: Convergence d’un schéma de minimisation alternée. Ann. Fac. Sci. Toulouse V. Sér. Math. 2, 1–9 (1980)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Alduncin, G.: Composition duality principles for mixed variational inequalities. Math. Comput. Model. 41, 639–654 (2005)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Attouch, H., Briceño-Arias, L.M., Combettes, P.L.: A parallel splitting method for coupled monotone inclusions. SIAM J. Control Optim. 48, 3246–3270 (2010)MATHCrossRefGoogle Scholar
  4. 4.
    Attouch, H., Redont, P., Soubeyran, A.: A new class of alternating proximal minimization algorithms with costs-to-move. SIAM J. Optim. 18, 1061–1081 (2007)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Attouch, H., Théra, M.: A general duality principle for the sum of two operators. J. Convex Anal. 3, 1–24 (1996)MathSciNetMATHGoogle Scholar
  6. 6.
    Aujol, J.-F., Chambolle, A.: Dual norms and image decomposition models. Int. J. Comput. Vis. 63, 85–104 (2005)CrossRefGoogle Scholar
  7. 7.
    Bauschke, H.H., Burke, J.V., Deutsch, F.R., Hundal, H.S., Vanderwerff, J.D.: A new proximal point iteration that converges weakly but not in norm. Proc. Am. Math. Soc. 133, 1829–1835 (2005)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)MATHCrossRefGoogle Scholar
  9. 9.
    Bauschke, H.H., Combettes, P.L., Reich, S.: The asymptotic behavior of the composition of two resolvents. Nonlinear Anal. 60, 283–301 (2005)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Briceño-Arias, L.M., Combettes, P.L.: A monotone + skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. (2011, in press)Google Scholar
  11. 11.
    Briceño-Arias, L.M., Combettes, P.L.: Monotone operator methods for Nash equilibria in non-potential games. http://arxiv.org/abs/1106.0144
  12. 12.
    Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53, 475–504 (2004)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Combettes, P.L., Dũng, D., Vũ, B.C.: Proximity for sums of composite functions. J. Math. Anal. Appl. 380, 680–688 (2011)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Eckstein, J., Ferris, M.C.: Smooth methods of multipliers for complementarity problems. Math. Program. 86, 65–90 (1999)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Ekeland, I., Temam, R.: Analyse Convexe et Problèmes Variationnels. Dunod, Paris, 1974. Convex Analysis and Variational Problems. SIAM, Philadelphia, PA (1999)Google Scholar
  18. 18.
    Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)Google Scholar
  19. 19.
    Fenchel, W.: Convex Cones, Sets and Functions. Princeton University, Princeton, NJ (1953)MATHGoogle Scholar
  20. 20.
    Fukushima, M.: The primal Douglas–Rachford splitting algorithm for a class of monotone mappings with applications to the traffic equilibrium problem. Math. Program. 72, 1–15 (1996)MathSciNetMATHGoogle Scholar
  21. 21.
    Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary Value Problems, pp. 299–331. North-Holland, Amsterdam (1983)Google Scholar
  22. 22.
    Glowinski, R., Le Tallec, P. (eds.): Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)MATHGoogle Scholar
  23. 23.
    Goh, C.J., Yang, X.Q.: Duality in Optimization and Variational Inequalities. Taylor & Francis, London (2002)MATHCrossRefGoogle Scholar
  24. 24.
    Gol’shteĭn, E.G.: Teoriya Dvoistvennosti v Matematicheskom Programmirovanii i ee Prilozheniya (Duality Theory in Mathematical Programming and Its Applications). Nauka, Moscow (1971)Google Scholar
  25. 25.
    Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Konnov, I.V.: The splitting method with a linear search for direct-dual variational inequalities. Comput. Math. Math. Phys. 43, 494–507 (2003)MathSciNetGoogle Scholar
  27. 27.
    Lebedev, V.N., Tynjanskĭ, N.T.: Duality theory of concave-convex games. Sov. Math. Dokl. 8, 752–756 (1967)MATHGoogle Scholar
  28. 28.
    Luque, J.: Convolutions of maximal monotone mappings. Technical report LIDS-P-1597, MIT Libraries, Cambridge, MA. http://mit.dspace.org/handle/1721.1/2953 (1986)
  29. 29.
    McLinden, L.: An extension of Fenchel’s duality theorem to saddle functions and dual minimax problems. Pac. J. Math. 50, 135–158 (1974)MathSciNetMATHGoogle Scholar
  30. 30.
    Mercier, B.: Topics in finite element solution of elliptic problems. In: Lectures on Mathematics, vol. 63. Tata Institute of Fundamental Research, Bombay (1979)Google Scholar
  31. 31.
    Mercier, B.: Inéquations variationnelles de la mécanique. In: Publications Mathématiques d’Orsay, vol. 80.01. Université de Paris-XI, Orsay, France (1980)Google Scholar
  32. 32.
    Moreau, J.-J.: Théorèmes “inf-sup”. C. R. Acad. Sci. Paris Sér. A Math. 258, 2720–2722 (1964)MathSciNetMATHGoogle Scholar
  33. 33.
    Moreau, J.-J.: Fonctionnelles Convexes. Séminaire Jean Leray sur les Équations aux Dérivées Partielles, no. 2, Collège de France, Paris, 1966–1967. Corrected reprint: Edizioni del Dipartimento di Ingegneria Civile. Università di Roma Tor Vergata, Rome (2003)Google Scholar
  34. 34.
    Mosco, U.: Dual variational inequalities. J. Math. Anal. Appl. 40, 202–206 (1972)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Moudafi, A.: On the stability of the parallel sum of maximal monotone operators. J. Math. Anal. Appl. 199, 478–488 (1996)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Passty, G.B.: The parallel sum of nonlinear monotone operators. Nonlinear Anal. 10, 215–227 (1986)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Pennanen, T.: Dualization of generalized equations of maximal monotone type. SIAM J. Optim. 10, 809–835 (2000)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Robinson, S.M.: Composition duality and maximal monotonicity. Math. Program. 85, 1–13 (1999)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Rockafellar, R.T.: Minimax theorems and conjugate saddle-functions. Math. Scand. 14, 151–173 (1964)MathSciNetMATHGoogle Scholar
  40. 40.
    Rockafellar, R.T.: Duality and stability in extremum problems involving convex functions. Pac. J. Math. 21, 167–187 (1967)MathSciNetMATHGoogle Scholar
  41. 41.
    Rockafellar, R.T.: Conjugate Duality and Optimization. SIAM, Philadelphia, PA (1974)MATHCrossRefGoogle Scholar
  42. 42.
    Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Seeger, A.: Direct and inverse addition in convex analysis and applications. J. Math. Anal. Appl. 148, 317–349 (1990)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optim. 29, 119–138 (1991)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, River Edge, NJ (2002)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Patrick L. Combettes
    • 1
  • Jean-Christophe Pesquet
    • 2
  1. 1.Laboratoire Jacques-Louis Lions, UMR CNRS 7598UPMC Université Paris 06ParisFrance
  2. 2.Laboratoire d’Informatique Gaspard Monge, UMR CNRS 8049Université Paris-EstMarne la Vallée Cedex 2France

Personalised recommendations