Set-Valued and Variational Analysis

, Volume 19, Issue 1, pp 135–156 | Cite as

The Concavity Assumption on Felicities and Asymptotic Dynamics in the RSS Model



An analysis of the RSS model in mathematical economics involves the study of an infinite-horizon variational problem in discrete time. Under the assumption that the felicity function is upper semicontinuous and “supported” at the value of the maximally-sustainable level of a production good, we report a generalization of results on the equivalence, existence and asymptotic convergence of optimal trajectories in this model. We consider two parametric specifications, and under the second, identify a “symmetry” condition on the zeroes of a “discrepancy function” underlying the objective function that proves to be necessary and sufficient for the asymptotic convergence of good programs. With a concave objective function, as is standard in the antecedent literature, we show that the symmetry condition reduces to an equivalent “non-interiority” condition.


Good program Maximal program Optimal program Value-loss Non-differentiability Discrepancy function Non-interiority Existence of optimal programs Asymptotic convergence 

JEL Classification

C62 D90 

Mathematics Subject Classifications (2010)

52A41 91B55 49J45 37B25 39A06 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arkin, V., Evstigneev, I.: Stochastic Models of Control and Economic Dynamics. Academic, New York (1987)Google Scholar
  2. 2.
    Bewley, T. F.: General Equilibrium, Overlapping Generations Models and Optimal Growth Theory. Harvard University Press, Cambridge (2007)Google Scholar
  3. 3.
    Brock, W.A.: On existence of weakly maximal programmes in a multi-sector economy. Rev. Econ. Stud. 37, 275–280 (1970)MATHCrossRefGoogle Scholar
  4. 4.
    Carlson, D.A., Haurie, A. B., Leizarowitz, A.: Infinite Horizon Optimal Control: Deterministic and Stochastic Systems. Springer, Berlin (1991)MATHGoogle Scholar
  5. 5.
    Cass, D., Stiglitz, J.E.: The implications of alternative savings and expectation hypotheses for choices of technique and patterns of growth. J. Polit. Econ. 77, 586–627 (1970)CrossRefGoogle Scholar
  6. 6.
    Dana, R.A., Le Van, C., Mitra, T., Nishimura, K. (eds.): Handbook of Optimal Growth, vol. 1 (2006) Springer, Berlin.Google Scholar
  7. 7.
    Gale, D.: On optimal development in a multi-sector economy. Rev. Econ. Stud. 37, 1–18 (1967)MathSciNetGoogle Scholar
  8. 8.
    Khan, M.A., Mitra, T.: On choice of technique in the Robinson–Solow–Srinivasan model. Int. J. Econ. Theory 1, 83–109 (2005)CrossRefGoogle Scholar
  9. 9.
    Khan, M.A., Mitra, T.: Undiscounted optimal growth under irreversible investment: a synthesis of the value-loss approach and dynamic programming. Econ. Theory 29, 341–362 (2006)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Khan, M.A., Mitra, T.: Optimal growth in a two-sector RSS model without discounting: a geometric investigation. Japanese Economic Review 58, 191–225 (2007)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Khan, M.A., Mitra, T.: Growth in the Robinson–Solow–Srinivasan model: undiscounted optimal policy with a strictly concave welfare function. J. Math. Econ. 44, 707–732 (2008)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Khan, M.A., Piazza, A.: On the Mitra–Wan forestry model: a unified analysis. In: Publicación Técnica CMM, no. 226, pp. 1–21 (2009)Google Scholar
  13. 13.
    Khan, M.A., Piazza, A.: On the non-existence of optimal programs in the Robinson–Solow–Srinivasan (RSS) model. Econ. Lett. 109, 94–98 (2010)MATHCrossRefGoogle Scholar
  14. 14.
    Khan, M.A., Piazza, A.: An overview of turnpike theory: towards the discounted deterministic case. Adv. Math. Econ. 14, 39–68 (2011)CrossRefGoogle Scholar
  15. 15.
    Khan, M.A., Zaslavski, A.J.: On a uniform turnpike of the third kind in the Robinson–Solow–Srinivasan model. J. Econ. 92, 137–166 (2007)MATHCrossRefGoogle Scholar
  16. 16.
    Khan, M.A., Zaslavski, A.J.: On two classical turnpike results for the Robinson–Solow–Srinivasan (RSS) model. Adv. Math. Econ. 13, 47–97 (2010)CrossRefGoogle Scholar
  17. 17.
    Leizarowitz, A.: Infinite horizon autonomous systems with unbounded cost. Appl. Math. Optim. 13, 19–43 (1985)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Leizarowitz, A.: Infinite horizon autonomous systems with unbounded cost. Math. Oper. Res. 10, 450–461 (1985)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Leizarowitz, A.: Optimal trajectories of infinite-horizon deterministic control systems. Appl. Math. Optim. 19, 11–32 (1989)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Leizarowitz, A., Zaslavski, A.J.: Infinite-horizon variational problems with non-convex integrands. SIAM J. Control Optim. 34, 1099–1134 (1996)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Leizarowitz, A., Zaslavski, A.J.: On a class of infinite-horizon optimal control problems with periodic cost functions. J. Nonlinear Convex Anal. 6, 71–91 (2005)MATHMathSciNetGoogle Scholar
  22. 22.
    Majumdar, M.K.: Intertemporal allocation with a non-convex technology. In: Dana, R.A., Le Van, C., Mitra, T., Nishimura, K. (eds.) Handbook of Optimal Growth, vol. 1, chapter 7, pp. 171–202. Springer, Berlin (2006)CrossRefGoogle Scholar
  23. 23.
    McKenzie, L.W.: Optimal economic growth, turnpike theorems and comparative dynamics. In: Arrow, K.J., Intrilligator, M. (eds.) Handbook of Mathematical Economics, vol. III, pp. 1281–1355. North-Holland, Amsterdam (1986)Google Scholar
  24. 24.
    McKenzie, L.W.: Classical General Equilibrium Theory. MIT Press, Cambridge (2002)Google Scholar
  25. 25.
    Mitra, T.: Characterization of the turnpike property of optimal paths in the aggregative model of intertemporal allocation. Int. J. Econ. Theory 1, 247–275 (2005)CrossRefGoogle Scholar
  26. 26.
    Mitra, T., Wan, H.W. Jr.: On the Faustmann solution to the forest management problem. J. Econ. Theory 40, 229–249 (1986)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Rockafellar, R.T.: Hamiltonian trajectories and saddle points in mathematical economics. Control Cybern. 4, 1565–1578 (2009)Google Scholar
  28. 28.
    Seierstad, A., Sydsaeter, K.: Optimal Control Theory With Economic Applications. North-Holland, Amsterdam (1987)MATHGoogle Scholar
  29. 29.
    Stiglitz, J.E.: A note on technical choice under full employment in a socialist economy. Econ. J. 78, 603–609 (1968)CrossRefGoogle Scholar
  30. 30.
    Stiglitz, J.E.: Recurrence of techniques in a dynamic economy. In: Mirrlees, J., Stern, N.H. (eds.) Models of Economic Growth. Wiley, New York (1973)Google Scholar
  31. 31.
    Zaslavski, A.J.: Optimal programs in the RSS model. Int. J. Econ. Theory 1, 151–165 (2005)CrossRefGoogle Scholar
  32. 32.
    Zaslavski, A.J.: Turnpike Properties in the Calculus of Variations and Optimal Control. Springer, New York (2005)Google Scholar
  33. 33.
    Zaslavski, A.J.: Good programs in the RSS model with a nonconcave utility function. J. Ind. Manag. Optim. 2, 399–423 (2006)MATHMathSciNetGoogle Scholar
  34. 34.
    Zaslavski, A.J.: Turnpike results for discrete-time optimal control systems arising in economic dynamics. Nonlinear Anal. 67, 2024–2049 (2007)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of EconomicsThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Departamento de MatemáticaUniversidad Técnica Federico Santa MaríaValparaísoChile

Personalised recommendations