Advertisement

Set-Valued and Variational Analysis

, Volume 18, Issue 3–4, pp 277–306 | Cite as

A Second-Order Model for Image Denoising

  • Maïtine BergouniouxEmail author
  • Loic Piffet
Article

Abstract

We present a variational model for image denoising and/or texture identification. Noise and textures may be modelled as oscillating components of images. The model involves a L 2-data fitting term and a Tychonov-like regularization term. We choose the BV 2 norm instead of the classical BV norm. Here BV 2 is the bounded hessian function space that we define and describe. The main improvement is that we do not observe staircasing effects any longer, during denoising process. Moreover, texture extraction can be performed with the same method. We give existence results and present a discretized problem. An algorithm close to the one set by Chambolle (J Math Imaging Vis 20:89–97, 2004) is used: we prove convergence and present numerical tests.

Keywords

Second order total variation Image reconstruction Denoising Texture Variational method 

Mathematics Subject Classifications (2010)

65D18 68U10 65K10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl. 10(6), 1217–1229 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, Oxford University Press (2000)Google Scholar
  3. 3.
    Attouch, H., Briceño-Arias, L.M., Combettes, P.L.: A parallel splitting method for coupled monotone inclusions. SIAM J. Control Optim. 48, 3246 (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Attouch, H., Buttazzo, G., Michaille, G.: Variational analysis in sobolev and BV spaces: applications to PDEs and optimization. MPS-SIAM series on optimization. Philadelphia, ISBN 0-89871-600-4 (2006)Google Scholar
  5. 5.
    Aubert, G., Aujol, J.F.: Modeling very oscillating signals, application to image processing. Appl. Math. Optim. 51(2), 163–182 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Aubert, G., Aujol, J.F., Blanc-Feraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. Math. Imaging Vis. 22(1), 71–88 (2005)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Aubert, G., Kornprobst, P.: Mathematical problems in image processing, partial differential equations and the calculus of variations. Applied Mathematical Sciences, vol. 147. Springer Verlag (2006)Google Scholar
  8. 8.
    Aujol, J.F.: Some first-order algorithms for total variation based image restoration. J. Math. Imaging Vis. 34, 307–327 (2009)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Demengel, F.: Fonctions à hessien borné. Annales de l’institut Fourier, Tome 34(2), 155–190 (1984)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Echegut, R., Piffet, L.: A variational model for image texture identification (preprint). http://hal.archives-ouvertes.fr/hal-00439431/fr/
  12. 12.
    Ekeland, I., Temam, R.: Convex Analysis and Variational problems. SIAM Classic in Applied Mathematics, vol. 28 (1999)Google Scholar
  13. 13.
    Fadili, J., Peyré, G.: Total variation projection with first order schemes (preprint). http://hal.archives-ouvertes.fr/hal-00380491/fr/
  14. 14.
    Hinterberger, W., Scherzer, O.: Variational methods on the space of functions of bounded Hessian for convexification and denoising. Computing 76(1–2), 109–133 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations. University Lecture Series, vol. 22. AMS (2002)Google Scholar
  16. 16.
    Osher, S., Fatemi, E., Rudin L.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)CrossRefzbMATHGoogle Scholar
  17. 17.
    Osher, S., Sole, A., Vese L.: Image decomposition and restoration using total variation minimization and the H 1 norm. SIAM J. Multiscale Model. Simul. 1(3), 349–370 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Osher, S., Vese, L.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19(1–3), 553–572 (2003)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Osher, S.J., Vese, L.A.: Image denoising and decomposition with total variation minimization and oscillatory functions. Special issue on mathematics and image analysis. J. Math. Imaging Vis. 20(1–2), 7–18 (2004)MathSciNetGoogle Scholar
  20. 20.
    Piffet, L.: Modèles variationnels pour l’extraction de textures 2D. Ph.D. Thesis, Orléans (2010)Google Scholar
  21. 21.
    Weiss, P., Blanc-Féraud, L., Aubert, G.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31(n°3), 2047–2080 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Yin, W., Goldfarb, D., Osher, S.: A comparison of three total variation based texture extraction models. J. Vis. Commun. Image 18, 240–252 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.UFR Sciences, Math., Labo. MAPMO, UMR 6628Université d’OrléansOrléans cedex 2France

Personalised recommendations