Set-Valued and Variational Analysis

, Volume 18, Issue 3–4, pp 483–511 | Cite as

Inradius and Circumradius of Various Convex Cones Arising in Applications

  • René Henrion
  • Alberto SeegerEmail author


This note addresses the issue of computing the inradius and the circumradius of a convex cone in a Euclidean space. It deals also with the related problem of finding the incenter and the circumcenter of the cone. We work out various examples of convex cones arising in applications.


Convex cone Incenter Circumcenter Inradius Circumradius Ball-generated cone Fitted cone  Cone of matrices 

Mathematics Subject Classifications (2010)

46B10 46B20 52A41 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azé, D., Hiriart-Urruty, J.-B.: Optimal Hoffman-type estimates in eigenvalue and semidefinite inequality constraints. J. Glob. Optim. 24, 133–147 (2002)zbMATHCrossRefGoogle Scholar
  2. 2.
    Barker, G.P., Foran, J.: Self-dual cones in Euclidean spaces. Linear Algebra Appl. 13, 147–155 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Barker, G.P., Loewy, R.: The structure of cones of matrices. Linear Algebra Appl. 12, 87–94 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bauschke, H.H., Kruk, S.G.: Reflection-projection method for convex feasibility problems with an obtuse cone. J. Optim. Theory Appl. 120, 503–531 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Belloni, A., Freund, R.M.: A geometric analysis of Renegar’s condition number, and its interplay with conic curvature. Math. Program. 119, 95–107 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Best, M.J., Chakravarti, N.: Active set algorithms for isotonic regression; a unifying framework. Math. Program. 47, 425–439 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bishop, E., Phelps, R.R.: The support functionals of a convex set. Proc. Symp. Pure Math. 7, 27–35 (1963)MathSciNetGoogle Scholar
  8. 8.
    Boyarshinov, V., Magdon-Ismail, M.: Linear time isotonic and unimodal regression in the L 1 and L  ∞  norms. J. Discret. Algorithms 4, 676–691 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  10. 10.
    Eichfelder, G., Jahn, J.: Set-semidefinite optimization. J. Convex Anal. 15, 767–801 (2008)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Ellaia, R., Hiriart-Urruty, J.B.: The conjugate of the difference of convex functions. J. Optim. Theory Appl. 49, 493–498 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Epelman, M., Freund, R.M.: A new condition measure, preconditioners, and relations between different measures of conditioning for conic linear systems. SIAM J. Optim. 12, 627–655 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Feng, Z.Q., Hjiaj, M., Mróz, Z., de Saxcé, G.: Effect of frictional anisotropy on the quasistatic motion of a deformable solid sliding on a planar surface. Comput. Mech. 37, 349–361 (2006)zbMATHCrossRefGoogle Scholar
  14. 14.
    Freund, R.M.: On the primal-dual geometry of level sets in linear and conic optimization. SIAM J. Optim. 13, 1004–1013 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Freund, R.M., Vera, J.R.: Condition-based complexity of convex optimization in conic linear form via the ellipsoid algorithm. SIAM J. Optim. 10, 155–176 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Gao, W., Shi, N.Z.: I-projection onto isotonic cones and its applications to maximum likelihood estimation for log-linear models. Ann. Inst. Stat. Math. 55, 251–263 (2003)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Goffin, J.L.: The relaxation method for solving systems of linear inequalities. Math. Oper. Res. 5, 388–414 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Güler, O.: Barrier functions in interior point methods. Math. Oper. Res. 21, 860–885 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Hall, M.: Combinatorial Theory. Blaisdell Publishing Co., Boston (1967)zbMATHGoogle Scholar
  20. 20.
    Henrion, R., Seeger, A.: On properties of different notions of centers for convex cones. Set-Value Var. Anal. 18, 205–231 (2010)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Hiriart-Urruty, J.B.: A general formula on the conjugate of the difference of functions. Can. Math. Bull. 29, 482–485 (1986)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Hiriart-Urruty, J.B, Seeger, A.: A variational approach to copositive matrices. SIAM Rev. 52 (2010, in press)Google Scholar
  23. 23.
    Ikramov, K.D., Savel’eva, N.V.: Conditionally definite matrices. J. Math. Sci. 98, 1–50 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Iusem, A., Seeger, A.: Axiomatization of the index of pointedness for closed convex cones. Comput. Appl. Math. 24, 245–283 (2005)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Iusem, A., Seeger, A.: Measuring the degree of pointedness of a closed convex cone: a metric approach. Math. Nachr. 279, 599–618 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Iusem, A., Seeger, A.: Angular analysis of two classes of non-polyhedral convex cones: the point of view of optimization theory. Comput. Appl. Math. 26, 191–214 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Iusem, A., Seeger, A.: Normality and modulability indices. Part I: convex cones in normed spaces. J. Math. Anal. Appl. 338, 365–391 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Iusem, A., Seeger, A.: Searching for critical angles in a convex cone. Math. Program. 120, 3–25 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Iusem, A., Seeger, A.: Distances between closed convex cones: old and new results. J. Convex Anal. 17 (2010, in press) (online since 2009)Google Scholar
  30. 30.
    Jacobson, D.H.: Extensions of Linear-Quadratic Control, Optimization and Matrix Theory. Academic, London (1977)Google Scholar
  31. 31.
    Jahn, J.: Bishop–Phelps cones in optimization. Int. J. Optim. Theory Methods Appl. 1, 123–139 (2009)MathSciNetGoogle Scholar
  32. 32.
    Lewis, A.S.: Convex analysis on the Hermitian matrices. SIAM J. Optim. 6, 164–177 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Martinez-Legaz, J.E.: On convex and quasiconvex spectral functions. In: Proceed. of the 2nd Catalan Days on Applied Mathematics (Odeillo, 1995), pp. 199–208, Collect. Études, Presses Univ. Perpignan, Perpignan (1995)Google Scholar
  34. 34.
    Overton, M., Womersley, R.S.: Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices. Math. Program. 62, 321–357 (1993)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Petschke, M.: On a theorem of Arrow, Barankin, and Blackwell. SIAM J. Control Optim. 28, 395–401 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Pinto da Costa, A., Seeger. A.: Numerical resolution of cone-constrained eigenvalue problems. Comput. Appl. Math. 28, 37–61 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)zbMATHGoogle Scholar
  38. 38.
    Saporta, G.: Probabilités, Analyse des Donnés et Statistique. Editions Technip, Paris (1990)Google Scholar
  39. 39.
    Shannon, C.: Probability of error for optimal codes in a Gaussian channel. Bell Syst. Tech. J. 38, 611–656 (1959)MathSciNetGoogle Scholar
  40. 40.
    Shimizu, S.: A remark on homogeneous convex domains. Nagoya Math. J. 105 , 1–7 (1987)zbMATHMathSciNetGoogle Scholar
  41. 41.
    Stanley, R.P.: Log-concave and unimodal sequences in algebra, combinatorics, and geometry. Graph theory and its applications: East and West (Jinan, 1986). Ann. N.Y. Acad. Sci. 576, 500–535 (1989)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Stern, R.J., Wolkowicz, H.: Exponential nonnegativity on the ice cream cone. SIAM J. Matrix Anal. Appl. 12, 160–165 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Stern, R.J., Wolkowicz, H.: Invariant ellipsoidal cones. Linear Algebra Appl. 150, 81–106 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Stout, Q.F.: Unimodal regression via prefix isotonic regression. Comput. Stat. Data Anal. 53, 289–297 (2008)zbMATHCrossRefGoogle Scholar
  45. 45.
    Toland, J.F.: A duality principle for nonconvex optimisation and the calculus of variations. Arch. Ration. Mech. Anal. 71, 41–61 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Wang, D.S., Medgyesi-Mitschang, L.N.: Electromagnetic scattering from finite circular and elliptic cones. IEEE Trans. Antennas Propag. 33, 488–497 (1985)CrossRefGoogle Scholar
  47. 47.
    Zhang, H.W., He, S.Y., Li, X.S., Wriggers, P.: A new algorithm for numerical solution of 3D elastoplastic contact problems with orthotropic friction law. Comput. Mech. 34, 1–14 (2004)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany
  2. 2.Department of MathematicsUniversity of AvignonAvignonFrance

Personalised recommendations