Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Necessary and Sufficient Conditions for the Interchange Between Infimum and the Symbol of Integration

  • 207 Accesses

  • 10 Citations


We make a study of various notions of decomposability for subsets of measurable functions in relation with the interchange results between infimum and integration. For this we introduce the notions of serial decomposability and of decomposability relatively to an integrand. A characterization of closed serially decomposable subsets of the Lebesgue spaces L p is given. The second notion of decomposability introduced is characteristic for the interchange property studied. Many examples are presented. The links are made with R. T. Rockafellar’s decomposability, F. Hiai, H. Umegaki’s decomposability, G. Bouchitté and M. Valadier’s stability and normal decomposability introduced by O. Anza Hafsa and J.-P. Mandallena. As applications we obtain exact lower bounds for minimization problems of integral functionals on normally decomposable spaces (spaces of continuous functions for example), and for the minimization of a class of functionals of the Calculus of Variations.

This is a preview of subscription content, log in to check access.


  1. 1.

    Anza Hafsa, O., Mandallena, J.-P.: Interchange of infimum and integral. Calc. Var. 18, 433–449 (2003)

  2. 2.

    Antosiewicz, H.A., Cellina, A.: Continuous selections and differential relations. J. Differ. Equ. 19, 386–398 (1975)

  3. 3.

    Aubin, J.P., Cellina, A.: Differential Inclusions. A Series of Comprehensive Studies in Mathematics, vol. 264. Springer, Berlin (1984)

  4. 4.

    Amara, C., Ciligot, M: Lower CS-closed sets and functions. J. Math. Anal. Appl. 239(2), 371–389 (1999)

  5. 5.

    Bourbaki, N.: Eléments de Mathematiques, Topologie Générale, chapitres 1 à 4. Hermann, Paris (1971)

  6. 6.

    Bouchitté, G., Valadier, M.: Integral representation of convex functionals on a space of measures. J. Funct. Anal. 80, 398–420 (1988)

  7. 7.

    Bourass, A.: Comparaison de fonctionnelles intégrales. Conditions de croissance caractéristiques et application à la semi continuité dans les espaces intégraux de type Orlicz. Thèse d’État, Perpignan (1983)

  8. 8.

    Bourass, A., Truffert, A.: Ensembles fermés décomposables dans les espaces intégraux de type Orlicz. Séminaire d’Analyse Convexe de Montpellier exposé n° 15 (1982)

  9. 9.

    Bourass, A., Giner, E.: Kuhn-Tucker conditions and integral functionals. J. Convex Anal. 8(2), 533–553 (2001)

  10. 10.

    Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values. Stud. Math. 90, 69–85 (1988)

  11. 11.

    Castaing, C., Valadier, M.: Convex analysis and measurable multifunctions. In: Lecture Notes in Math., vol. 580. Springer, Berlin (1977)

  12. 12.

    Dal Maso, G., Defranceschi, A., Vitali, E.: A characterization of C 1-convex sets in Sobolev spaces. Manuscr. Math. 75(3), 247–272 (1992)

  13. 13.

    Fryszkowski, A.: Continuous selections for a class of nonconvex multivalued maps. Stud. Math. 76, 163–174 (1983)

  14. 14.

    Hiai, F., Umegaki, H.: Integrals, conditional expectation and martingales of multivalued functions. J. Multivar. Anal. 7, 149–182 (1977)

  15. 15.

    Holmes, R.B.: Geometric Functional Analysis and Its Applications. Springer, Berlin (1975)

  16. 16.

    Jameson, J.O.: Convex series. Proc. Camb. Philos. Soc. 72, 37–47 (1972)

  17. 17.

    Marle, C.M.: Mesures et Probabilités. Hermann (1974)

  18. 18.

    Michael, E.: Continuous selections I. Ann. Math. 63, 361–382 (1956)

  19. 19.

    Neveu, J.: Bases Mathématiques du Calcul des Probabilités. Masson, Paris (1970)

  20. 20.

    Olech, C.: Decomposability as a substitute for convexity. In: Multifunctions and Integrands. Lecture Notes in Mathematics, vol. 1091, pp. 193–205. Springer, New York (1983)

  21. 21.

    Rockafellar, R.T.: Integrals which are convex functionals. Pac. J. Math. 24(n° 3), 525–539 (1968)

  22. 22.

    Rockafellar, R.T.: Integrals which are convex functionals, II. Pac. J. Math. 39(n° 2), 439–469 (1971)

  23. 23.

    Rockafellar, R.T.: Convex integral functionals and duality. In: Zarantonello, E. (ed.) Contributions to Non Linear Functional Analysis, pp. 215–236. Academic, New York (1971)

  24. 24.

    Rockafellar, R.T.: Integral functionals, normal integrands and measurable selections. In: Lecture Notes in Math., vol. 543, pp. 157–206. Springer, New York (1976)

  25. 25.

    Rockafellar, R.T., Wets, J.B.: Variational Analysis. Springer, New York (1998)

  26. 26.

    Valadier, M.: Contribution à l’Analyse convexe. Thèse d’État, Montpellier (1970)

  27. 27.

    Valadier, M.: Multi-applications mesurables à valeurs convexes compactes. J. Math. Pures Appl. 50, 265–297 (1971)

Download references

Author information

Correspondence to Emmanuel Giner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Giner, E. Necessary and Sufficient Conditions for the Interchange Between Infimum and the Symbol of Integration. Set-Valued Anal 17, 321 (2009). https://doi.org/10.1007/s11228-009-0119-y

Download citation


  • Decomposability
  • Serial decomposability
  • Richness
  • Essential infimum
  • Continuous functions
  • Measurable integrand
  • f-decomposability
  • Integral functional
  • Calculus of Variations

Mathematics Subject Classifications (2000)

  • 26A51
  • 26B20
  • 26E15
  • 28B15
  • 28B25
  • 28B20
  • 46B42
  • 46E15
  • 46E30
  • 46N10
  • 49-XX