Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A Weak Maximum Principle for Optimal Control Problems with Nonsmooth Mixed Constraints


We derive a weak Maximum Principle for nonsmooth optimal control problem involving mixed constraints under some convexity assumptions. Notably we consider problems with possibly nonsmooth mixed constraints. A nonsmooth version of the positive linear independence of the gradients with respect to the control of the mixed constraints plays a key role in validation of our main result.

This is a preview of subscription content, log in to check access.


  1. 1.

    Hestenes, M.R.: Calculus of Variations and Optimal Control. Wiley, New York (1966)

  2. 2.

    Neustadt, L.W.: Optimization, A Theory of Necessary Conditions. Princeton University Press, New Jersey (1976)

  3. 3.

    Stefani, G., Zezza, P.L.: Optimality conditions for constrained control problems. SIAM J. Control Optim. 34, 635–659 (1996)

  4. 4.

    Milyutin, A.A., Osmolovskii, N.P.: Calculus of Variations and Optimal Control Theory. Transl. Math. Monogr., vol. 180. AMS, Providence, RI (1998)

  5. 5.

    Dmitruk, A.V.: Maximum principle for the general optimal control problem with phase and regular mixed constraints. Comput. Math. Model. CMMOEA 4, 307–426 (1993)

  6. 6.

    Arutyunov, A.V.: Optimality Conditions: Abnormal and Degenerate Problems. Kluwer Academic, Dordrecht (2000)

  7. 7.

    Pales, Z., Zeidan, V.: Optimal control problems with set-valued control and state constraints. SIAM J. Optim. 14, 334–358 (2003)

  8. 8.

    Pales, Z., Zeidan, V.: First and second order necessary conditions for control problems with constraints. Trans. Amer. Math. Soc. 346, 421–453 (1994)

  9. 9.

    De Pinho, M.d.R., Ilchmann, A.: Weak maximum principle for optimal control problems with mixed constraints. Nonlinear Anal. 48, 1179–1196 (2002)

  10. 10.

    De Pinho, M.d.R., Vinter, R.B., Zheng, H.: A maximum principle for optimal control problems with mixed constraints. IMA J. Math. Control Inform. 18, 189–205 (2001)

  11. 11.

    De Pinho, M.d.R.: Mixed constrained control problems. J. Math. Anal. Appl. 278, 293–307 (2003)

  12. 12.

    Devdaryani E.N., Ledyaev, Y.S.: Maximum principle for implicit control systems. Appl. Math. Optim. 40, 79–103 (1996)

  13. 13.

    De Pinho, M.d.R., Rosenblueth, J.F.: Necessary conditions for constrained problems under Mangasarian-Fromowitz conditions. SIAM J. Control Optim. 47, 535–552 (2008)

  14. 14.

    De Pinho, M.d.R., Vinter, R.B.: An Euler-Lagrange inclusion for optimal control problems. IEEE Trans. Automat. Control 40, 1191–1198 (1995)

  15. 15.

    Clarke, F.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

  16. 16.

    Rockafellar, R.T., Wets, B.: Variational Analysis. Grundlehren Math. Wiss., vol. 317. Springer, Berlin (1998)

  17. 17.

    Clarke, F., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer,New York (1998)

  18. 18.

    Vinter, R.B.: Optimal Control. Systems Control Found. Appl., Birkhäuser, Boston (2000)

  19. 19.

    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I. Basic Theory, Grundlehren Math. Wiss., vol. 330. Springer, Berlin (2006)

  20. 20.

    Clarke, F.: The maximum principle in optimal control. Control Cybernet. 34, 709–722 (2005)

Download references

Author information

Correspondence to M. d. R. de Pinho.

Additional information

Dedicated to Boris Mordukhovich on his 60th birthday.

The first author was support by FEDER and FCT-Portugal, grants POSC/EEA/SRI/61831/2004 and SFRH/BSAB/781/2008. G.N. Silva thanks the financial support of CNPq grant 200875/06-0 and FAPESP grant 07-5226-6.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Pinho, M.d.R., Loewen, P. & Silva, G.N. A Weak Maximum Principle for Optimal Control Problems with Nonsmooth Mixed Constraints. Set-Valued Anal 17, 203–221 (2009).

Download citation


  • Optimal control
  • Maximum principle
  • Nonsmooth analysis

Mathematics Subject Classification (2000)

  • 49K15