Generalized Topological Essentiality and Coincidence Points of Multivalued Maps

  • Grzegorz GaborEmail author
  • Lech Górniewicz
  • Mirosław Ślosarski


A concept of generalized topological essentiality for a large class of multivalued maps in topological vector Klee admissible spaces is presented. Some direct applications to differential equations are discussed. Using the inverse systems approach the coincidence point sets of limit maps are examined. The main motivation as well as main aim of this note is a study of fixed points of multivalued maps in Fréchet spaces. The approach presented in the paper allows to check not only the nonemptiness of the fixed point set but also its topological structure.


Topological degree Klee admissible spaces Fixed points Multivalued maps Inverse systems Topological structure Limit map Admissible maps Differential inclusions Fréchet spaces 

Mathematics Subject Classifications (2000)

54H25 47H10 55M20 


  1. 1.
    Agarwal, R.P., O’Regan, D.: Fixed point theory for admissible multimaps defined on closed subsets of Fréchet spaces. J. Math. Anal. Appl. 277, 438–445 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Akis, V.N.: Inverse systems of absolute retracts and almost continuity. Proc. Am. Math. Soc. 95(3), 499–502 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Andres, J., Gabor, G., Górniewicz, L.: Topological structure of solution sets to multivalued asymptotic problems. Z. Anal. ihre Anwend. 19, 35–60 (2000)zbMATHGoogle Scholar
  4. 4.
    Andres, J., Gabor, G., Górniewicz, L.: Acyclicity of solution sets to functional inclusions. Nonlinear Anal. TMA 49, 671–688 (2002)zbMATHCrossRefGoogle Scholar
  5. 5.
    Andres, J., Górniewicz, L.: Topological Fixed Point Principles for Boundary Value Problems. Topological Fixed Point Theory and Its Applications, 1. Kluwer Academic, Dordrecht (2003)Google Scholar
  6. 6.
    Appel, J., Väth, M., Vignoli, A.: F-epi maps. Topol. Methods Nonlinear Anal. 18(2), 373–393 (2001)MathSciNetGoogle Scholar
  7. 7.
    Aronszajn, N.: Le correspondant topologique de l’unicité dans la théorie des équations différentielles. Ann. Math. 43, 730–738 (1942)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Browder, F., Gupta, C.P.: Topological degree and nonlinear mappings of analytic type in Banach spaces. J. Math. Anal. Appl. 26, 390–402 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Engelking, R.: Outline of General Topology. North-Holland, PWN, Amsterdam (1968)zbMATHGoogle Scholar
  10. 10.
    Frigon, M.: Fixed point results for compact maps on closed subsets of Fréchet spaces and applications to differential and integral equations. Bull. Belg. Math. Soc. Simon Stevin 9, 23–37 (2002)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Gabor, G.: On the acyclicity of fixed point sets of multivalued maps. Topol. Methods Nonlinear Anal. 14, 327–343 (2000)MathSciNetGoogle Scholar
  12. 12.
    Gabor, G.: Some results on existence and structure of solution sets to differential inclusions on the halfline. Boll. Unione Mat. Ital. 5-B(8), 431–446 (2002)MathSciNetGoogle Scholar
  13. 13.
    Górniewicz, L.: Homological methods in fixed point theory of multivalued mappings. Diss. Math. 129, 1–71 (1976)Google Scholar
  14. 14.
    Górniewicz, L.: Topological Methods in Fixed Point Theory of Multivalued Mappings. Springer, New York (2006)Google Scholar
  15. 15.
    Górniewicz, L., Marano, S.A.: On the fixed point set of multivalued contractions. Rend. Circ. Mat. Palermo 40, 139–145 (1996)Google Scholar
  16. 16.
    Górniewicz, L., Rozpłoch-Nowakowska, D.: The Lefschetz fixed point theory for morphisms in topological vector space. Topol. Methods Nonlinear Anal. 20, 315–333 (2002)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Górniewicz, L., Ślosarski, M.: Topological essentiality and differential inclusions. Bull. Aust. Math. Soc. 45, 177–193 (1992)zbMATHCrossRefGoogle Scholar
  18. 18.
    Granas, A.: The theory of compact vector fields and some of its applications. Diss. Math. 30, 1–93 (1962)MathSciNetGoogle Scholar
  19. 19.
    Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)zbMATHGoogle Scholar
  20. 20.
    Hyman, D.M.: On decreasing sequence of compact absolute retracts. Fund. Math. 64, 91–97 (1959)MathSciNetGoogle Scholar
  21. 21.
    Klee, V.: Leray-Schauder theory without local convexity. Math. Ann. 141, 286–296 (1960)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Krathausen, C., Müller, G., Reinermann, J., Schöneberg, R.: New Fixed Point Theorems for Compact and Nonexpansive Mappings and Applications to Hammerstein Equations, preprint no. 92, Sonderforschungsbereich 72. Approximation und Optimierung, Universität Bonn (1976)Google Scholar
  23. 23.
    O’Regan, D.: An essential map approach for multimaps defined on closed subsets of Fréchet spaces. Appl. Anal. 85, 503–513 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Pera, M.P.: A topological method for solving nonlinear equations in Banach spaces and some related global results on the structure of the solution sets. Rend. Sem. Mat. Univ. Politec. Torino 41, 73–87 (1983)MathSciNetGoogle Scholar
  25. 25.
    Schaefer, H.H.: Topological vector spaces. Macmillan, Collier-Macmillan, New York (1966)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Grzegorz Gabor
    • 1
    Email author
  • Lech Górniewicz
    • 1
  • Mirosław Ślosarski
    • 2
  1. 1.Faculty of Mathematics and Computer ScienceNicolaus Copernicus University of ToruńToruńPoland
  2. 2.Technical University of KoszalinKoszalinPoland

Personalised recommendations